
An introduction to AUTOSAR

AUTOSAR Consortium

AUTOSAR

What is AUTOSAR?

AUTOSAR – AUTomotive Open Systems ARchitecture

Middleware and system-level standard, jointly developed by

automobile manufacturers, electronics and software suppliers

and tool vendors.

More than 100 members

Motto: “cooperate on standards, compete on implementations”

Reality: current struggle between OEM and Tier1 suppliers

Target: facilitate portability, composability, integration of SW

components over the lifetime of the vehicle

Standardization of Components and Interfaces

The software implementing the automotive functionality is encapsulated
in software components. Standardization of the interfaces is central to
support scalability and transferability of functions. Any standard-
conformant implementation of a software component can be integrated
with substantially reduced effort in a system.

The standardization could be developed incrementally towards:
– Level of abstraction

• Functional aspects

• Behavior and implementation aspects

– Level of decomposition
• Low degree of decomposition of the functional domain

• High degree of decomposition of the functional domain

– Level of architecture definition
• Terminology

• Standardized data-types

• Partial description of interfaces (without semantics)

• Complete description of interfaces (without semantics)

• Complete description of interfaces (with semantics)

• Partial definition of the functional domain

• Complete definition of the functional domain

Functional domains

The specification of functional interfaces is divided into 6
domains:

– Body/Comfort

– Powertrain

– Chassis

– Safety

– Multimedia/Telematics

– Man-machine-interface

The domains could be differently handled due to intellectual

property rights issues and decomposition levels.

In the first phase of AUTOSAR only in the domains

body/comfort, chassis, and powertrain results can be expected.
All others have lower priority in the first phase.

AUTOSAR Architecture

A
U
T
O
S
A
R

S
W
-C
 1

SW-C
Description

Virtual Functional Bus

Basic Software

RTE

A
U
T
O
S
A
R

S
W
-C
 1

ECU1

A
U
T
O
S
A
R

S
W
-C
 2

SW-C
Description

A
U
T
O
S
A
R

S
W
-C
 3

SW-C
Description

A
U
T
O
S
A
R

S
W
-C
 n

SW-C
Description

ECU
Descriptions

System
Constraint
Description

Deployment tools

Gateway

Basic Software

RTE
A
U
T
O
S
A
R

S
W
-C
 2

ECU1
A
U
T
O
S
A
R

S
W
-C
 3

Basic Software

RTE

A
U
T
O
S
A
R

S
W
-C
 n

ECU1

AUTOSAR Architecture

• AUTOSAR SWAUTOSAR SWAUTOSAR SWAUTOSAR SW----CCCC
The AUTOSAR Software Components encapsulate an
application which runs on the AUTOSAR infrastructure. The
AUTOSAR SW-C have well-defined interfaces, which are
described and standardized.
– SWSWSWSW----C C C C DescriptionDescriptionDescriptionDescription

For the interfaces as well as other aspects needed for the integration of
the AUTOSAR Software Components, AUTOSAR provides a standard
description format (SW-C Description).

A
U
T
O
S
A
R

S
W
-C
 1

SW-C Description

AUTOSAR Architecture

• VirtualVirtualVirtualVirtual FunctionalFunctionalFunctionalFunctional Bus (VFB)Bus (VFB)Bus (VFB)Bus (VFB)
The VFB is the sum of all communication mechanisms (and
interfaces to the basic software) provided by AUTOSAR on an
abstract (technology independent) level. When the connections
for a concrete system are defined, the VFB allows a virtual
integration in an early development phase.

A
U
T
O
S
A
R

S
W
-C
 1

SW-C
Description

Virtual Functional Bus

A
U
T
O
S
A
R

S
W
-C
 2

SW-C
Description

A
U
T
O
S
A
R

S
W
-C
 3

SW-C
Description

A
U
T
O
S
A
R

S
W
-C
 n

SW-C
Description

AUTOSAR Architecture

• System System System System ConstraintConstraintConstraintConstraint and ECU and ECU and ECU and ECU DescriptionsDescriptionsDescriptionsDescriptions
In order to integrate AUTOSAR SW-Components into a
network of ECUs, AUTOSAR provides description formats for
the system as well as for the resources and the configuration of
the ECUs.

ECU
Descriptions

System
Constraint
Description

Deployment tools

AUTOSAR Architecture: Mapping on ECUs

AUTOSAR defines the methodology and tool support to build a
concrete system of ECUs. This includes the configuration and
generation of the Runtime Environment (RTE) and the Basic
Software (RTOS) on each ECU.

• RuntimeRuntimeRuntimeRuntime EnvironmentEnvironmentEnvironmentEnvironment (RTE)(RTE)(RTE)(RTE)
From the viewpoint of the AUTOSAR Software Component, the
RTE implements the VFB functionality on a specific ECU.

Deployment tools

Basic Software

RTE

A
U
T
O
S
A
R

S
W
-C
 2

ECU1
A
U
T
O
S
A
R

S
W
-C
 3

AUTOSAR Architecture

• Basic Software

The Basic Software provides the infrastructure for execution
on an ECU.

Basic Software

RTE

A
U
T
O
S
A
R

S
W
-C
 2

ECU1

A
U
T
O
S
A
R

S
W
-C
 3

AUTOSAR Architecture

A fundamental concept of AUTOSAR is the separation between:

•application and

•infrastructure.
An application in AUTOSAR consists of Software Components
interconnected by connectors

AUTOSAR Component

The The The The genericgenericgenericgeneric ““““AUTOSAR AUTOSAR AUTOSAR AUTOSAR ComponentComponentComponentComponent”””” conceptconceptconceptconcept
• AUTOSAR Software Component
• Sensor/Actuator Software Component (special case).
• Composition

– a logical interconnection of components packaged as a
component. In contrast to the Atomic Software Components,
the components inside a composition can be distributed over
several ECUs.

• ECU Abstraction
• Complex Device Driver
• AUTOSAR Services.

AUTOSAR Component

Each AUTOSAR Software Component encapsulates part of
the functionality of the application.

– AUTOSAR does not prescribe the granularity of Software
Components. Depending on the requirements of the application
domain an AUTOSAR Software Component might be a small,
reusable piece of functionality (such as a filter) or a larger block
encapsulating an entire sybsystem.

The AUTOSAR Software Component is an "Atomic
Software Component"
Atomic means that the each instance of an AUTOSAR
Software Component is statically assigned to one ECU.

AUTOSAR Components

Implementing an AUTOSAR Software Component

AUTOSAR does not prescribe HOW an AUTOSAR

Software Component should be implemented

– a component may be handwritten or generated from a model

AUTOSAR Components

Shipping an AUTOSAR Software Component

A shipment of an AUTOSAR Software Component consists

of

• a complete and formal

Software Component

Description which specifies

how the infrastructure must be

configured for the component,
and

• an implementation of the

component, which could be
provided as "object code" or

"source code".

Software

Component

Description

Component

Implementation

AUTOSAR Components: Description

The AUTOSAR Software Component Description
contains:

• the operations and data elements that
the software component provides and
requires

– described using the PortInterface concept

• the requirements on the infrastructure,

• the resources needed by the software
component (memory, CPU-time, etc.),

• information regarding the specific
implementation of the software
component.

• The structure and format of this
description is called “software component
template”.

Software

Component

Description

AUTOSAR Components

A source code component implementation is independent
from

Component

Implementation

– the type of microcontroller of the ECU and the

type of ECU on which the component is
mapped

• The AUTOSAR infrastructure takes care of

providing the software component with a

standardized view on the ECU hardware

– the location of the other components with

which it interacts. The component description

defines the data or services that it provides or
requires. The component doesn’t know if they

are provided from components on the same

ECU or from components on a different ECU.

– the number of times a software component is

instantiated in a system or within one ECU

AUTOSAR Components: description levels

The highest (most abstract)
description level is the Virtual

Functional Bus.

Here components are described

with the means of datatypes and
interfaces, ports and connections

between them, as well as

hierarchical components. At this

level, the fundamental

communication properties of
components and their

communication relationships among

each other are expressed.

– Software components

– Compositions

– Interfaces

AUTOSAR Components

Description of components on
RTE level: The middle level allows

for behavior description of a given

component. This behavior is

expressed through RTE concepts,

e.g. RTE events and in terms of
schedulable units. For instance,

for an operation defined in an

interface on the VFB, the behavior

specifies which of those units is

activated as a consequence of the
invocation of that operation.

– Runnables

– Events

– Interaction with the Run
Time Environment

AUTOSAR Components

Descriptions of components on
implementation level: The lowest

(most concrete) level of

description specifies the

implementation of a given

behavior. More precisely, the
schedulable units of such a

behavior are mapped to code.

The two layers above constrain

the RTE API that a component is

offered, the implementation now
utilizes this API.

– Component
implementation

– Resource consumption of
SW-Components

Component-oriented design

What is a SW component?

A reusable self-contained artefact implementing a function with

given properties

SW Component

Structure Behavior

Resource and

non-functional

requirements

Component-oriented design

Component structure

– Key concepts: information hiding and encapsulation

SW
Component

Structure Behavior

Resource

and non-

functional

requirements

SW Component

As in OO (C++)

Classes

Does not suffice for
encapsulation!

What type/style?

Provided interface

Method signature(s)
Synchronous call, transfer of control
double GetRotSpeed(int wheel_index)

Method signature(s)
Synchronous call, transfer of control
double GetRotSpeed(int wheel_index)

Required interface

Data ports
Asynchronous, no transfer of control
port_out double GetRotSpeed

port_in int wheel_index)

Data ports
Asynchronous, no transfer of control
port_out double GetRotSpeed

port_in int wheel_index)

SW Component

SW Component

Component-oriented design

Component structure

– Key concepts: information hiding and encapsulation

SW
Component

Structure Behavior

Resource

and non-

functional

requirements

SW Component
Data ports
Asynchronous, no transfer of control
port_out double GetRotSpeed

port_in int wheel_index)

Data ports
Asynchronous, no transfer of control
port_out double GetRotSpeed

port_in int wheel_index)

SW Component

SW Component

Internal behavior

synchronous
model

(combinatorial)

f(.)

g(.)
+

synchronous

model (FSM)

Method signature(s)
Synchronous call, transfer of control
double GetRotSpeed(int wheel_index)

Method signature(s)
Synchronous call, transfer of control
double GetRotSpeed(int wheel_index)

Component-oriented design

Component structure

– Key concepts: information hiding and encapsulation

SW
Component

Structure Behavior

Resource

and non-

functional

requirements

SW Component

SW Component

SW Component

Internal behavior

Method signature(s)
Synchronous call, transfer of control
double GetRotSpeed(int wheel_index)

Method signature(s)
Synchronous call, transfer of control
double GetRotSpeed(int wheel_index)

program code

PRECONDITIONS

POSTCONDITIONS

INVARIANTS

design by
contract

Component-oriented design

Component structure

– Key concepts: information hiding and encapsulation

SW
Component

Structure Behavior

Resource

and non-

functional

requirements

SW Component

SW Component

SW Component

Communication
behavior

Component-oriented design

Component structure

– Key concepts: information hiding and encapsulation

SW
Component

Structure Behavior

Resource

and non-

functional

requirements

SW Component

SW Component

SW Component

Task and resource

description

AUTOSAR Components

Components dependencies are described in form of interfaces
and ports, no internal, hidden dependencies may exist.

Therefore, components are in theory exchangeable as long as

they implement the same logic and provide the same public

communication interface to the remaining system.

Once a component is defined with the help of the software

component template, a new component type has been defined.

Such a component can be used an arbitrary number of times

within the system as well as in different systems.

Components are developed against the virtual functional bus, an

abstract communication channel without direct dependency on

ECUs and communication busses and they must not directly call

the operating system or the communication hardware.
– As a result, they are transferable and can be deployed to ECUs very

late in the development process.

Components, Ports and Interfaces

A component has well-defined ports, through which the
component can interact with other components.

A port always belongs to exactly one component and
represents a point of interaction between a component and
other components.

To define the services or data that are provided on or
required by a port of a component, the AUTOSAR Interface
concept is introduced.

The AUTOSAR Interface can be

– Client-Server Interface defining a set of operations that
can be invoked

– Sender-Receiver Interface, for data-oriented
communication

Components, Ports and Interfaces

A port can be

– PPort (provided interface)

– RPort (required interface)

When a PPort provides an interface, the component to

which the port belongs

– provides an implementation of the operations defined in the
Client-Server Interface

– generates the data described in a data-oriented Sender-
Receiver Interface.

When an RPort of a component requires an AUTOSAR

Interface, the component can

– invoke the operations when the interface is a Client-Server

– read the data elements described in the Sender-Receiver
Interface.

Communication Patterns: summary

elementary communication patterns
– Client-Server

– Sender-Receiver
Interfaces specify

– what information sender receiver communication
transports

– which services with which arguments can be called
by client-server communication

The formal description of the interface is in the software
component template, including also data types that can be
used and interface compatibility.
The detailed behavior of a basic communication pattern is
specified by attributes. With those attributes e.g. the length
of data queues and the behavior of receivers (blocking,
non-blocking, etc.) and senders (send cyclic, etc.) can be
defined.

Client-server communication

The server is a provider and the client is a user of a service.

The client initiates the communication, requesting that the server

performs a service, transferring a parameter set if necessary.

The server waits for incoming communication requests from a

client, performs the requested service and dispatches a
response to the client’s request.

The direction of initiation is used to categorize whether an

AUTOSAR Software Component is a client or a server. A single
component can be both a client and a server depending on the

software realization.

After the service request is initiated and until the response of the

server is received The client can be

– blocked (synchronous communication)

– non-blocked (asynchronous communication).

Client-server communication: notation

An example of client-server communication in the

composition of three software components and two

connections in the VFB model view.

Sender-receiver communication

Model for the asynchronous distribution of information

where a sender distributes information to one or several

receivers.

The sender is not blocked (asynchronous communication)

and neither expects nor gets a response from the receivers
(data or control flow), the sender just provides the

information and the receivers decides autonomously when
and how to use it

It is the responsibility of the communication infrastructure to

distribute the information.

The sender does not know the identity or the number of

receivers

Sender-receiver communication

an example of how sender-receiver communication is

modeled in AUTOSAR

AUTOSAR Components, Interfaces and ports

The visual representation of components, ports and

interfaces in a component model

AUTOSAR Components: connections

Two components are eventually connected by hooking up a

p-port of one component to a compatible r-port of the other

component.

– The model shows that it is allowed to define a component without
any ports, which seems counterintuitive, this is only reasonable
for components that are totally self-contained.

Whether ports are actually compatible is described by a
“PortInterface”. As will be shown later, these port interfaces

declare services or data elements that are required and
provided by the respective ports.

AUTOSAR Components: connections

A port interface has a single attribute called “isService”. This flag
indicates, whether service or data described in the interface is

actually provided by AUTOSAR services instead of another

AUTOSAR component.

AUTOSAR Components: communication behavior

AUTOSAR software components communicate via the
Virtual Functional Bus. They need ways to express
requirements and capabilities with respect to exchanging
data, which is currently possible through two kinds of
attributes:

Communication attributes, allow specifying parameters of
the communication that affect the generation of the RTE or
the actual communication taking place at runtime. An
example for such an attribute is the aforementioned transfer
time over a connector.

Application level attributes, allow describing properties of
exchanged data that do not affect the RTE generation, but
are indicate to the developer how data needs to be
processed. An example for this kind of attribute is a flag,
whether data is “filtered” or “raw”..

AUTOSAR Components: Sensor/Actuator Components

Sensor/Actuator Components are special AUTOSAR Software
Components which encapsulate the dependencies of the

application on specific sensors or actuators.

The AUTOSAR infrastructure takes care of hiding the specifics

of the microcontroller (this is done in the MCAL, the
microcontroller abstraction layer, which is part of the AUTOSAR

infrastructure running on the ECU) and the ECU electronics (this

is handled by the ECU-Abstraction which is also part of the

AUTOSAR Basic Software).

AUTOSAR Components: Sensor/Actuator Components

Typical conversion process from physical signals to
software signals (e.g. car velocity) and back (e.g. car light).

AUTOSAR Components: Sensor/Actuator Components

The AUTOSAR infrastructure does NOT hide the specifics of

sensors and actuators.

The dependencies on a specific sensor and/or actuator are dealt

with in "Sensor/Actuator Software Component", which is a

special kind of Software Component. Such a component is

independent of the ECU on which it is mapped but is dependent
on a specific sensor and/or actuator for which it is designed.

– For example, a "Sensor Component" typically inputs a software
representation of the electrical signal at an input-pin of the ECU
(e.g. a current produced by the sensor) and outputs the
physical quantity measured by the sensor (e.g. the car speed).

Typically, because of performance issues, such components will

need to run on the ECU to which the sensor/actuator is

physically connected.

The Virtual Function Bus (VFB)

The virtual functional bus is the abstraction of the AUTOSAR
Software Components interconnections of the entire vehicle. The

communication between different software components and

between software components and its environment (e.g.

hardware driver, OS, services, etc.) can be specified

independently of any underlying hardware (e.g. communication
system). The functionality of the VFB is provided by

communication patterns.

The Virtual Function Bus (VFB)

From the VFB view ports of AUTOSAR Software Components,
Complex Device Drivers, the ECU Abstraction and AUTOSAR

Services can be connected. Complex Device Drivers, the ECU

Abstraction and AUTOSAR Services are part of the Basic

Software.

ECU SW Architecture

ECU Architecture - Layered Software Architecture

A layered architecture has been developed within AUTOSAR to

enable a clear and structured interface definition and a well defined
abstraction of the hardware.

The architecture is structured in 5 layers plus the Complex Drivers.

AUTOSAR Architecture Layers

AUTOSAR Software

This layer consists of AUTOSAR Software Components that are

mapped on the ECUs.

All interaction between AUTOSAR Software Components is

routed through the AUTOSAR Runtime Environment. The
AUTOSAR Interface specification assures the connectivity.

AUTOSAR Runtime Environment

The AUTOSAR Runtime Environment (RTE) acts as a system-
level communication center for inter- and intra-ECU information
exchange.

Microcontroller Abstraction Layer

Microcontroller

C
o

m
p

le
x

D
ri

v
e
rs

ECU Abstraction layer

Services layer

AUTOSAR Runtime Environment

Application layer

AUTOSAR Runtime Environment

The RTE is the runtime representation of the Virtual
Function Bus for a specific ECU.
The RTE provides a communication abstraction to AUTOSAR
Software Components providing the same interface and services
for inter-ECU (using CAN, LIN, Flexray, MOST, etc.) or intra-
ECU communication.

As the communication requirements of the software components
are application dependent, the RTE needs to be tailored. It is
therefore very likely, that the main parts of RTE will be generated
and tailored to provide desired communication services while still
being resource-efficient. Thus, the RTE will likely differ between
one ECU and another.

– The RTE is typically tool-generated and statically configured

AUTOSAR Runtime Environment

The AUTOSAR Runtime Environment has the responsibility to
provide a uniform environment to AUTOSAR Software

Components to make the implementation of the software

components independent from communication mechanisms and

channels.

The RTE achieves this by mapping the communication

relationships between components, that are specified in the

different templates, to a specific intra-ECU communication

mechanism, such as a function call, or an inter-ECU

communication mechanism, such as a COM message which
leads to CAN communication.

AUTOSAR Runtime Environment

Access to ports from a software component implementation
The implementation of an AUTOSAR Software Component is not
allowed to use the communication layer, for example OSEK
COM, directly.

To communicate with other software components it uses ports
and client-server communication or sender-receiver
communication.

The RTE generator is responsible for creating the appropriate
language-dependant APIs based on the definition of the
interface of the component in the Software Component
Template.
The API has to be the same independent from the mapping of
the components, i.e. the component's code must not be changed
when the mapping is changed.

The API names are derived from the XML files and conform to a
naming convention.

AUTOSAR Runtime Environment

AUTOSAR Runtime Environment

Implementation of connectors

The RTE generator is also responsible for generating code,
which implements the connectors between the ports.

This generated code is dependant on the mapping of the
software components to ECUs.

If the connector connects two components on the same ECU a
local communication stub can be generated.

Otherwise, a stub that uses network communication must be
generated.

AUTOSAR Runtime Environment

The mapping from a connector to a communication stub must
conserve the semantics of this connector independent from the

used communication medium.

The communication stub is also responsible for parameter

marshalling. This includes serializing complex data to a byte
stream. But endian conversion (if any is necessary) is delegated

to the communication module of the Basic Software.

Lifecycle management

The RTE is responsible for the lifecycle management of

AUTOSAR Software Components. It has to invoke startup and

shutdown functions of the software component.

AUTOSAR Runtime Environment

Access to Basic Software

An AUTOSAR Software Component is not allowed to access
Basic Software directly.

Firstly, the access to services, to the ECU abstraction, or to
Complex Device Drivers is abstracted via ports and AUTOSAR
interfaces.

With respect to the component implementation, the RTE
provides appropriately generated APIs for Basic Software
access.

Multiple Instantiations of software components

The RTE shall support multiple instantiations of software
components. The basic intention of multiple instantiation is to
avoid code duplication if possible. Furthermore different private
states of multiple instances shall be supported.

– but in AUTOSAR R2.0 this feature is cancelled !

AUTOSAR Architecture Layers

AUTOSAR Basic Software

Basic Software is the standardized software layer, which
provides services to the SW Components. It does not fulfill
any functional job and is situated below the AUTOSAR
Runtime Environment. It contains

Standardized components
– Services including diagnostic protocols; NVRAM, flash and

memory management.

– Communication the communication framework (e.g. CAN,
LIN, FlexRay...), the I/O management, and the network
management.

ECU specific components.
– Operating system

– Microcontroller abstraction

– Complex Device Drivers

AUTOSAR – Basic software: Operating system

AUTOSAR includes requirements for an AUTOSAR Operating
System. The OS

– is configured and scaled statically,
– is amenable to reasoning of real-time performance, provides a

priority-based scheduling, provides protective functions at run-
time, and

– is hostable on low-end controllers with and without external
resources.

It is assumed that some domains (e.g. telematic/infotainment)
will continue to use proprietary OSs. In these cases the
interfaces to AUTOSAR components must still be AUTOSAR
compliant (the proprietary OS must be abstracted to an
AUTOSAR OS).

The standard OSEK OS (ISO 17356-3) is used as the basis for
the AUTOSAR OS.

Basic Software structure

The layered architecture has been further refined in the

area of Basic Software. Around 80 Basic Software modules
have been defined (11 main blocks plus Complex Drivers).

AUTOSAR – Basic software: microcontroller abstr.

Access to the microcontroller registers is routed through the
Microcontroller Abstraction layer (MCAL).

MCAL is a hardware specific layer that ensures a standard
interface to the Basic Software. It manages the microcontroller

peripherals and provides the components of the Basic Software

with microcontroller independent values. MCAL implements

notification mechanisms to support the distribution of commands,

responses and information to processes. It can include
– Digital I/O (DIO),

– Analog/Digital Converter (ADC),

– Pulse Width (De)Modulator (PWM, PWD),

– EEPROM (EEP),

– Flash (FLS),

– Capture Compare Unit (CCU),

– Watchdog Timer (WDT),

– Serial Peripheral Interface (SPI), and

– I2C Bus (IIC).

Microcontroller abstraction layer

The Microcontroller Abstraction Layer is the lowest layer of the

Basic Software. It contains drivers, with direct access to the µC

internal peripherals and memory mapped µC external devices.

Microcontroller Abstraction Layer

Microcontroller

Microcontroller abstraction layer

Microcontroller Abstraction Layer

The Microcontroller abstraction layer is subdivided into 4 parts:

– I/O Drivers
Drivers for analog and digital I/O (e.g. ADC, PWM, DIO).

– Communication Drivers
Drivers for ECU onboard (e.g. SPI, I2C) and vehicle

communication (e.g. CAN). OSI-Layer: Part of Data Link
Layer.

– Memory Drivers
Drivers for on-chip memory devices (e.g. internal Flash, internal

EEPROM) and memory mapped external memory devices
(e.g. external Flash).

– Microcontroller Drivers
Drivers for internal peripherals (e.g. Watchdog, Clock Unit) and

functions with direct µC access (e.g. RAM test, Core test).

ECU Abstraction layer

The ECU Abstraction Layer provides a software interface to the

electrical values of any specific ECU in order to decouple higher-

level software from all underlying hardware dependencies.

Microcontroller Abstraction Layer

Microcontroller

C
o

m
p

le
x

D
ri

v
e
rs

ECU Abstraction layer

Services layer

ECU Abstraction layer

I/O Hardware Abstraction:

A group of modules which abstracts from the location of

peripheral I/O devices (on-chip or on-board) and the ECU

hardware layout (e.g. µC pin connections and signal level

inversions).

The I/O hardware abstraction does not abstract from the

sensors/actuators! I/O devices are accessed via an I/O signal

interface.

The task of this group of modules is

– to represent I/O signals as they are connected to the

ECU hardware (e.g. current, voltage, frequency), and

– to hide ECU hardware and layout properties from higher

software layers.

ECU Abstraction layer

An example:

ECU Abstraction layer

Communication HW abstraction

A group of modules which abstracts from the location of
communication controllers and the ECU hardware layout. For all
communication systems a specific communication hardware
abstraction is required (e.g. for LIN, CAN, MOST, FlexRay).

– Example: An ECU has a microcontroller with 2 internal CAN
channels and an additional on-board ASIC with 4 CAN
controllers. The CAN-ASIC is connected to the microcontroller via
SPI.

The communication drivers are accessed via bus specific
interfaces (e.g. CAN Interface). That means the access to the CAN
controller should be regardless of whether it is located inside the
microcontroller, externally to it, or whether it is connected via SPI.

The task of this group of modules is to provide equal mechanisms
to access a bus channel regardless of its location (on-chip / on-
board).

ECU Abstraction layer

An example:

ECU Abstraction layer

Memory HW Abstraction

A group of modules which abstracts from the location of
peripheral memory devices (on-chip or on-board) and the
ECU hardware layout.

– Example: on-chip EEPROM and external EEPROM devices
should be accessible via an equal mechanism.

The memory drivers are accessed via memory specific
interfaces (e.g. EEPROM Interface). The task of this group
of modules is to provide equal mechanisms to access
internal (on-chip) and external (onboard) memory devices.

ECU Abstraction layer

An example:

ECU Abstraction layer

Onboard Device Abstraction

Contains drivers for ECU onboard devices which cannot be seen
as sensors or actuators like system basic chip, external

watchdog etc. Those drivers access the ECU onboard devices

via the µC abstraction layer.

The task of this group of modules is to abstract from ECU

specific onboard devices.

ECU Abstraction layer

An example:

Service layer

The service layer consists out of 3 different parts:

Communication Services

Memory Services

System Services

Service layer

Communication Services

The communication services are a group of modules for

vehicle network communication (CAN, LIN, FlexRay and
MOST). They are interfacing with the communication

drivers via the communication hardware abstraction. The
task of this group of modules is

– to provide a uniform interface to the vehicle network for

communication between different applications,

– to provide uniform services for network management,

– to provide a uniform interface to the vehicle network for
diagnostic communication, and

– to hide protocol and message properties from the

application.

Service layer

Generic structure

Service layer

An example
(CAN bus):

Service layer

Memory Services

A group of modules responsible for the management of non
volatile data (read/write from different memory drivers). The
NVRAM manager provides a RAM mirror as data interface to the
application for fast read access.

The task of this group of modules is

– to provide non volatile data to the application in a uniform way,

– to abstract from memory locations and properties, and

– to provide mechanisms for non volatile data management like
saving, loading, checksum protection and verification, reliable
storage etc.

Service layer

System Services

The system services are a group of modules and functions which

can be used by modules of all layers.

Examples are real-time operating system, error manager and

library functions (like CRC, interpolation etc.).

Some of these services are µC dependent (like OS), ECU

hardware and/or application dependent (like ECU state
manager, DCM) or hardware and µC independent.

The task of this group of modules is to provide basic services for

application and Basic Software modules.

Service layer

Structure

Complex Drivers

A Complex Driver implements complex sensor evaluation and actuator
control with direct access to the µC using specific interrupts and/or
complex µC peripherals (like PCP, TPU

Task: Fulfill the special functional and timing requirements for handling
complex sensors and actuators

Microcontroller Abstraction Layer

Microcontroller

C
o

m
p

le
x

D
ri

v
e
rs

Complex Drivers

The Complex Device Driver is a loosely coupled container,
where specific software implementations can be placed. The

only requirement to the software parts is that the interface to the

AUTOSAR world has to be implemented according to the

AUTOSAR port and interface specifications.

Complex Sensor and Actuator Control

The main task of the complex drivers is to implement complex

sensor evaluation and actuator control with direct access to the
µC using specific interrupts and/or complex µC peripherals (like

PCP, TPU), e.g.

– injection control

– electric valve control

– incremental position detection

Complex Drivers

Non-Standardized Drivers

Further on the Complex Device Drivers will be used to

implement drivers for hardware which is not supported by

AUTOSAR.

If for example a new communication system will be introduced in
general no AUTOSAR driver will be available controlling the

communication controller. To enable the communication via this

media, the driver will be implemented proprietarily inside the

Complex Device Drivers. In case of a communication request via

that media the communication services will call the Complex
Device Driver instead of the communication hardware

abstraction to communicate.

Another example where non-standard drivers are needed is to

support ASICs that implement a non-standardized functionality.

Complex Drivers

Migration Mechanism

Last but not least the Complex Device Drivers are to some

extend intended as a migration mechanism. Due to the fact that

direct hardware access is possible within the Complex Device

Drivers already existing applications can be defined as Complex
Device Drivers. If interfaces for extensions are defined according

to the AUTOSAR standards new extensions can be implemented

according to the AUTOSAR standards, which will not force the

OEM nor the supplier to reengineer all existing applications.

AUTOSAR Methodology

AUTOSAR requires a common technical approach for some
steps of system development. This approach is called the

“AUTOSAR Methodology”, which describes all major steps of the

development of a system, from the system-level configuration to

the generation of an ECU executable.

– The AUTOSAR Methodology is neither a complete

process description nor a business model and “roles” and

“responsibilities” are not defined.

– Furthermore, it does not prescribe a precise order in

which activities should be carried out. The methodology
is a mere work-product flow: it defines the dependencies

of activities on work-products.

AUTOSAR Methodology

Design steps go from the system-level configuration to the
generation of an ECU executable.

AUTOSAR Methodology

Design steps go from the system-level configuration to the
generation of an ECU executable.

Firstly, the System Configuration Input must to be

defined. The software components and the hardware are

selected, and the overall system constraints identified.

AUTOSAR provides a format for the formal description via

the information exchange format and the use of the following

templates.
– Software Components: each software component

requires a description of the software API e.g. data types,

ports, interfaces.

– ECU Resources: each ECU requires specifications

regarding e.g. the processor unit, memory, peripherals,

sensors and actuators.

– System Constraints: regarding the bus signals, topology

and mapping of belonging together software components.

Firstly, the System Configuration Input must to be

defined. The software components and the hardware are

selected, and the overall system constraints identified.

AUTOSAR provides a format for the formal description via

the information exchange format and the use of the following

templates.
– Software Components: each software component

requires a description of the software API e.g. data types,

ports, interfaces.

– ECU Resources: each ECU requires specifications

regarding e.g. the processor unit, memory, peripherals,

sensors and actuators.

– System Constraints: regarding the bus signals, topology

and mapping of belonging together software components.

AUTOSAR Methodology

Design steps go from the system-level configuration to the
generation of an ECU executable.

Firstly the System Configuration Input must to be

defined. The software components and the hardware are

selected, and the overall system constraints identified.

AUTOSAR provides a format for the formal description via

the information exchange format and the use of the following

templates.
– Software Components: each software component

requires a description of the software API e.g. data types,

ports, interfaces.

– ECU Resources: each ECU requires specifications

regarding e.g. the processor unit, memory, peripherals,

sensors and actuators.

– System Constraints: regarding the bus signals, topology

and mapping of belonging together software components.

Firstly the System Configuration Input must to be

defined. The software components and the hardware are

selected, and the overall system constraints identified.

AUTOSAR provides a format for the formal description via

the information exchange format and the use of the following

templates.
– Software Components: each software component

requires a description of the software API e.g. data types,

ports, interfaces.

– ECU Resources: each ECU requires specifications

regarding e.g. the processor unit, memory, peripherals,

sensors and actuators.

– System Constraints: regarding the bus signals, topology

and mapping of belonging together software components.

System Configuration

The System Configuration Input includes or references various
constraints. These constraints can force or forbid certain
components to be mapped to certain ECUs or requires certain
implementations to be used for components.

In addition, these constraints can contain resource estimations
describing the net availability of resources on ECUs and thereby
limiting the possible mappings.

The activity Configure System contains complex algorithms
and/or engineering work. There is a strong need for experience
in system architecture to map all the software components to the
ECUs. The tool AUTOSAR System Configuration Tool supports
the configuration.

An important output of the activity is the design of the System
Communication-Matrix. This System Communication-Matrix
completely describes the frames running on the networks
described in the topology and the contents and timing of those
frames.

AUTOSAR Software Process

The Configure System activity maps the software
components to the ECUs with resources and
timing requirements. The output of this activity is
the System Configuration Description

including system information (e.g. bus mapping,
topology) and the mapping of software
components to ECUs.

The Configure System activity maps the software
components to the ECUs with resources and
timing requirements. The output of this activity is
the System Configuration Description

including system information (e.g. bus mapping,
topology) and the mapping of software
components to ECUs.

Design steps go from the system-level configuration to the
generation of an ECU executable.

AUTOSAR Software Process

Extract ECU-Specific Information extracts the
information from the System Configuration
Description for a specific ECU. It becomes the
ECU Extract of System Configuration.

Extract ECU-Specific Information extracts the
information from the System Configuration
Description for a specific ECU. It becomes the
ECU Extract of System Configuration.

Further steps have to be performed for each ECU in the system.

This is a one to one copy of all elements of the System
Configuration Description that are appointed to this specific ECU.

This step can be completely automated.

AUTOSAR Software Process

Configure ECU mainly deals with the
configuration of the RTE and the
Basic Software modules. It adds all
implementation-related information,
including task scheduling, required
Basic Software modules,
configuration of the Basic Software,
assignment of runnable entities to
tasks, etc. The result of the activity is
included in the ECU Configuration
Description, which collects ECU-
specific information. The runnable
software to this specific ECU can be
built from this information.

Configure ECU mainly deals with the
configuration of the RTE and the
Basic Software modules. It adds all
implementation-related information,
including task scheduling, required
Basic Software modules,
configuration of the Basic Software,
assignment of runnable entities to
tasks, etc. The result of the activity is
included in the ECU Configuration
Description, which collects ECU-
specific information. The runnable
software to this specific ECU can be
built from this information.

Further steps have to be performed for each ECU in the system.

AUTOSAR Software Process

The configuration is based on the
information extracted from the ECU
Extract of System Configuration,
Collection of Available SWC
Implementations, and BSW Module
Description.

The latter contains the Vendor
Specific ECU Configuration
Parameter Definition which defines
all possible configuration parameters
and their structure.

The BSW Module Description is
assumed to consist of single
descriptions delivered together with
the appropriate used BSW module.

The configuration is based on the
information extracted from the ECU
Extract of System Configuration,
Collection of Available SWC
Implementations, and BSW Module
Description.

The latter contains the Vendor
Specific ECU Configuration
Parameter Definition which defines
all possible configuration parameters
and their structure.

The BSW Module Description is
assumed to consist of single
descriptions delivered together with
the appropriate used BSW module.

Further steps have to be performed for each ECU in the system.

AUTOSAR Software Process

The detailed scheduling information
or the configuration data for e.g. the
communication module, the operating
system, or AUTOSAR services have
to be defined in this activity. Moreover
at the latest here an implementation
is selected for each Atomic Software
Component.

The detailed scheduling information
or the configuration data for e.g. the
communication module, the operating
system, or AUTOSAR services have
to be defined in this activity. Moreover
at the latest here an implementation
is selected for each Atomic Software
Component.

Further steps have to be performed for each ECU in the system.

In contrast to the extraction of ECU-specific information, the
configuration activity is a non-trivial design step, which requires complex

design algorithms and engineering knowledge.

AUTOSAR Software Process

Further steps have to be performed for each ECU in the system.

AUTOSAR Software Process

In Build Executable (last step) an
executable is generated based on the
configuration of the ECU described in
the ECU Configuration Description.
This step typically involves
generating code (e.g. for the RTE and
the Basic Software), compiling code
(compiling generated code or
compiling software components
available as source-code) and linking
everything together into an
executable.

In Build Executable (last step) an
executable is generated based on the
configuration of the ECU described in
the ECU Configuration Description.
This step typically involves
generating code (e.g. for the RTE and
the Basic Software), compiling code
(compiling generated code or
compiling software components
available as source-code) and linking
everything together into an
executable.

Further steps have to be performed for each ECU in the system.

AUTOSAR Software Process

Parallel to these steps are several steps performed for every

application software component (to be integrated later into the

system), e.g. generating the components API, and implementing

the components functionality.

AUTOSAR Software Process

The initial work in this context starts with providing
the necessary parts of the software component
description.

That means at least the Component Internal
Behavior Description as part of the software
component related templates has to be filled out.
The internal behavior describes the scheduling
relevant aspects of a component, i.e. the runnable
entities and the events they respond to.
Furthermore, the behavior specifies how a
component (or more precisely which runnable)
responds to events like received data elements.
However, it does not describe the detailed
functional behavior of the component.

The initial work in this context starts with providing
the necessary parts of the software component
description.

That means at least the Component Internal
Behavior Description as part of the software
component related templates has to be filled out.
The internal behavior describes the scheduling
relevant aspects of a component, i.e. the runnable
entities and the events they respond to.
Furthermore, the behavior specifies how a
component (or more precisely which runnable)
responds to events like received data elements.
However, it does not describe the detailed
functional behavior of the component.

AUTOSAR Software Process

Afterwards Generate Component API has to be
performed. This is a tool-based activity. The
AUTOSAR Component API Generator reads the
Component Internal Behavior Description of the
appropriate software component and generates
the Component API accordingly. The Component
API contains all header declarations for the RTE
communication. .

Afterwards Generate Component API has to be
performed. This is a tool-based activity. The
AUTOSAR Component API Generator reads the
Component Internal Behavior Description of the
appropriate software component and generates
the Component API accordingly. The Component
API contains all header declarations for the RTE
communication. .

AUTOSAR Software Process

Implement Component means the

functional development of the

component. With the Component Internal

Behavior Description and the Component

API a software developer can implement

(i.e. developing, programming, testing)

the component vastly independent from

the other system design.

This implementation basically is outside

the scope of AUTOSAR.

Implement Component means the

functional development of the

component. With the Component Internal

Behavior Description and the Component

API a software developer can implement

(i.e. developing, programming, testing)

the component vastly independent from

the other system design.

This implementation basically is outside

the scope of AUTOSAR.

AUTOSAR Software Process

The results of the implementation will be

the Component Implementation (typically

the C-sources), a refined Component

Internal Behavior Description, containing

additional implementation specific

information, and a Component

Implementation Description, which

contains information about the further

build process (e.g. compiler settings,

optimizations, etc.).

The results of the implementation will be

the Component Implementation (typically

the C-sources), a refined Component

Internal Behavior Description, containing

additional implementation specific

information, and a Component

Implementation Description, which

contains information about the further

build process (e.g. compiler settings,

optimizations, etc.).

AUTOSAR Software Process

The following activities address the integration

of the previously provided component.

Compile Component uses the Component

Implementation Description for compiling the

Component Implementation together with the

Component API and the Additional Headers.

This yields the Compiled Component and

again a refined Component Implementation

Description. This contains additional new build

process information (mainly linker settings) and

the entry points.

The following activities address the integration

of the previously provided component.

Compile Component uses the Component

Implementation Description for compiling the

Component Implementation together with the

Component API and the Additional Headers.

This yields the Compiled Component and

again a refined Component Implementation

Description. This contains additional new build

process information (mainly linker settings) and

the entry points.

AUTOSAR

More on RTE, component integration and

runnables

AUTOSAR Components: interface with the RTE

We now deal with component aspects that:

1. support the proper configuration of the RTE and the

BSW: the software component description needs to
provide detailed information on how the underlying

software should behave with respect to the component
(for example: what runnables of the software-component

should be started when by the AUTOSAR OS),

2. describe the communication properties of a software-

component,

3. serve as a basis for the description of the detailed

resource requirements of software-components, and

4. provide a more detailed description of the timing
behavior of atomic softwarecomponents.

AUTOSAR Components: interface with the RTE

AUTOSAR Components: Runnable entities

Runnable Entities (also Runnable) are defined in the VFB specs.

Runnable entities are the smallest code-fragments that are

provided by the component and are (at least indirectly) a subject

for scheduling by the operating system. An implementation of an

atomic software-component has to provide an entry-point to code
for each Runnable in its "InternalBehavior“.

– It is not possible for "CompositionType" to be referenced by
"InternalBehavior". Only atomic software-components may have
Runnables.

SW-Component 1

Runnable 1a

Runnable 1b

Runnable 1c

Runnable 1d

AUTOSAR Components: Runnable entities

In most cases Runnables will not be scheduled individually but as
parts of OS tasks.

SW-Component 1

Runnable 1a

Runnable 1b

Runnable 1c

Runnable 1d

SW-Component 2

Runnable 2a

Runnable 2b

Runnable 2c

SW-Component 3

Runnable 3a

Runnable 3b

Task 1 Task 2

Task 3

Task 4

Task 5

Runnable 1a Runnable 1b Runnable 1c Runnable 1d

Runnable 2a Runnable 2b

Runnable 2c Runnable 3a

Runnable 3b

Runnable 2aRunnable 1a Task 6

*
*

AUTOSAR Components: Runnable entities

AUTOSAR Components: Runnable entities

AUTOSAR Components: Runnable entities

AUTOSAR Components: interface with the RTE

In case “canBeInvokedConcurrently” is FALSE.

During run-time, each Runnable of each instance of an atomic

software-component is (by being a member of an OS task) in one

of three states:

– Suspended: the initial state, the Runnable is passive, can be started

– Enabled: the Runnable should run (because for example a message
has been received on a port or a timing event occurs)

– Running: the Runnable is running within a running task.

The InternalBehavior describes for each Runnable, when a

transition from Suspended to Enabled occurs using the concept of

RTEEvent.

When a Runnable is "Enabled", the OS can decide to start running

it. The delay between entering "Enabled" and moving into

"Running" depends on the OS scheduling.

The transition from "Running" into "Suspended" depends on the

Runnable: it occurs when the Runnable returns or terminates

AUTOSAR Components: interface with the RTE

In case the internal behavior defines a runnable as one that
cannot be invoked concurrently, it is the responsibility of the RTE
and the BSW to make sure that the runnable is never started
concurrently. This implies that the implementation of the SW-
Component does not need to worry about concurrency issues.

For example:

– The internal behavior of a component-type MyComponentType
describes a Runnable R1, enabled when an operation on a
clientserver p-port is invoked. The component specifies that the
Runnable R1 cannot be invoked concurrently.

– The component MyComponentType is instantiated on an ECU.

– When a call of the operation is received, the corresponding
instance of the Runnable R1 is enabled and the OS will start
executing the Runnable in a task.

– If another call of the operation is received while the Runnable is
"running", the OS must not run the Runnable again in a second
task. Rather, the OS has to wait (and maybe queue the second
incoming request) until the Runnable returns into "Suspended".

AUTOSAR Components: interface with the RTE

If “canBeInvokedConcurrently” is TRUE, the same runnable can
run several times concurrently in different tasks. This implies that
there is no single state associated to the runnable.

Note that the SW-Component description itself does not put any
bounds on the number of concurrent invocations of the runnable
that are allowed.

Allowing concurrent invocation of a runnable implies that the
implementation of the SW-component needs to take care of this
additional form of concurrency.

For example:

– The internal behavior of MyComponentType describes a Runnable R1,
which should be enabled when an operation on a clientserver p-port of
the component is invoked. The Runnable R1 can be invoked
concurrently.

– The component MyComponentType is instantiated on an ECU.

– When a call of the operation is received, the corresponding instance of
the Runnable R1 is enabled and the OS will start executing the
Runnable in a task. If another call of the operation is received, it is
allowed that the same runnable is started again in a different task.

AUTOSAR Components: interface with the RTE

A typical use-case of concurrent runnables are the AUTOSAR
services. The AUTOSAR services will typically take care of

concurrency internally: several software components can directly

use the services in parallel. The ECU-integrator could then decide

that the runnable implementing the AUTOSAR service runs

directly in the context (in the task) of the software-component
invoking the service. This is a very efficient, direct coupling

between the client and the server: the connector between the

client and the server is reduced to a local function-call.

AUTOSAR Components: interface with the RTE

AUTOSAR Components: interface with the RTE

Preemption

The basic execution model of the Runnables shown above does
not fundamentally preclude the OS from preempting the execution
of a Runnable to execute another runnable.

The "InternalBehavior" might however put additional constraints
on the behavior of the OS, so that certain Runnables might never
be preempted (for example to assure certain timing requirements
when the Runnable needs to finish quickly after being enabled or
for example to ensure that logical sequencing constraints are
respected).

Reentrancy and “library functions”

Note that all code that is called by different Runnables (like e.g.
library routines, etc.) must obviously be reentrant. A filter
algorithm implemented in C, for example, is not allowed to store
values from previous runs by means of static variables or
variables with external binding.

AUTOSAR Components: RTE events

During execution, several run-time events will occur, such as the
reception of a remote operation-invocation on a P-Port or a

timeout on an R-Port that is not receiving the data-elements it

expects. Describing an RTEEvent in the software-component

template includes two aspects:

1. Defining an event

2. Defining how the RTE should deal with the event when it
occurs

As described in the virtual functional bus specification, the
implementation of a software-component can interact with the

occurrence of such events in two ways:

– The RTE can be instructed to enable a specific runnable when
the event occurs

– The RTE can provide "wait-points", that allow a runnable to
block until an event in a set of events occurs

AUTOSAR Components: RTE events

The description of the internal behavior includes a description of
all events that the internal behavior of the atomic software-

component relies on. This "RTEEvent“ shows up as an "abstract"

base-class in the meta-model: the exact attributes of the

"RTEEvent" depend on the exact event that is described

AUTOSAR Components: Response to events

In case the OS needs to start a Runnable when the corresponding
event occurs, the "RTEEvent" can directly reference the Runnable
that needs to be started. When the software-component
description uses this feature, it is the responsibility of the OS to
start the Runnable when the event occurs.

In case the Runnable wants to block and wait for events (which
makes the runnable into a cat. 2 runnable), the description of the
runnable may include the definition of a "wait-point". Such a
"WaitPoint" contains a reference to all events that are waited for.
The wait-point will block until one of the referenced events occurs.

A single "RunnableEntity" can actually wait only at a single
"WaitPoint" for being scheduled. On the other hand, it is in general
possible that a single event can be used to trigger "WaitPoints" in
different "RunnableEntities"

AUTOSAR Components: RTE events

AUTOSAR Components: Communication attributes

The highest level of description of information exchanged
between components in an AUTOSAR system is the
“PortInterfaces”, as shown in earlier sections.
Such an interface however, only describes structure and does not
include information about whether communication needs to be
done reliably, or whether an init value exists in case the real data
is not yet available.

This kind of information is known only within the particular
scenario the interface is used and also frequently differs
depending on whether an interface is required or provided.
Therefore, most communication relevant attributes are related to
the ports of a component.
The communication attributes are organized in “communication
specification” (short: ComSpec) classes. The model distinguishes
three basic classes depending on the role (R-, P-Port or
connector) as detailed below.

AUTOSAR Components: Communication attributes

Model of the communication attributes for an R-Port.

AUTOSAR Components: Communication attributes

The ComSpec attributes are collected depending on the kind of
data transmitted, which means they may differ depending on

whether data elements are exchanged (sender-receiver),

operations are called (client-server), or even depend on whether

the data-elements represent data or events.

This is expressed in the inheritance tree of ComSpec classes.

Each of these classes may then carry the specific attributes.

An R-Port may aggregate many ComSpec classes, possibly one
for each interface element (data element or operation) the

associated interface contains. The meaning of the attributes

shown above is explained in the following class tables.

AUTOSAR Components: RPort attributes

Communication attributes specific to receiving data.

Communication attributes specific to receiving events.

AUTOSAR Components: RPort attributes

Client-specific communication attributes.

Acknowledgement request attribute

Success/failure is reported via a SendPoint of a Runnable.

AUTOSAR Components: Pport attributes

AUTOSAR Components: PPort attributes

Attributes specific to distribution of data

Communication attributes for a server port

AUTOSAR Components: Connector attributes

AUTOSAR Components: Connector attributes

Communication attributes for connectors between sender and receiver
ports

Communication attributes for connectors between client and server ports

Runnables and communication

This section describes the sender-receiver communication

relevant attributes of a component, which influence the

behavior and API of the AUTOSAR RTE. Furthermore, the
possible interaction patterns for application of the sender-

receiver paradigm are explained, namely:

1. Data-access in a cat. 1 Runnable,

2. explicit sending,

3. the DataSendCompletedEvent: dealing with the

success/failure of an explicit send, and

4. the DataReceivedEvent: responding to the reception

of data

Runnables and communication

Runnables and communication

The "InternalBehavior" can specify that a Runnable needs read-
access or write-access to the data-elements of an RPort or
PPorts.
The presences of a DataReadAccess means that the runnable
needs access to the DataElement in the rPort. The runnable will
not modify the contents but only read the data and expects that
the contents do NOT change.

The presences of a DataWriteAccess means that the runnable
potentially modifies the dataElement in the pPort. The runnable
must ensure that the data-element is in a consistent state when it
returns. When using DataWriteAccess the new values of the
data-element is only made available when the runnable returns
(exits the "Running“ state).

Runnables and communication

Explicit send and receive

Runnables and communication

The Runnable entity can also have "DataSendPoints" which
reference an instance of a data element in the component’s p-

ports. The presence of a "DataSendPoint“ means that this

Runnable can explicitly "send" (an arbitrary number of times) new

values of the specified data-elements of the p-port (as opposed to

the “DataWriteAccess”)

– In analogy to explicitly sending data it is also possible to

define explicit polling for new available data through a

“DataReceivePoint”.

It would in general be possible to combine a "DataReceivePoint“

with a "WaitPoint" in the scope of a particular "RunnableEntity".

This would allow for a call to a blocking receive routine

implemented by the RTE. The "timeout" attribute of meta-class
"WaitPoint" can be used to specify the time until the blocking call

expires.

Runnables and client-server communication

Invoking an operation
A "RunnableEntity" invokes an operation via an "RPortPrototype"
of the enclosing "ComponentPrototype" typed by a particular
"AtomicSoftwareComponentType". Note that the operation itself
can be invoked either "synchronously" or "asynchronously".

In the majority of cases the operation will be invoked at a different
"ComponentPrototype“ but in general it would be possible to invoke
an operation on the same“ ComponentPrototype" as well.

The decision whether a specific operation is called synchronously
or asynchronously needs to be specified in the formal description
of the corresponding "AtomicSoftwareComponentType", namely in
the context of an "InternalBehavior".

Runnables and client-server communication

Invoking an operation
In case of a synchronous operation invocation the particular
"RunnableEntity" merely needs a "SynchronousServerCallPoint".
The other case is a bit more complex because it is necessary to
specify how to respond to a notification about the completion of the
corresponding operation.

This is done using the generic “RTEEvent” mechanism: the
notification about an asynchronously executed operation being
complete is implemented as an
"AsynchronousServerCallReturnsEvent".

Therefore, if an AsynchronousServerCallReturnsEvent is raised
the RTE can either trigger the execution of a specific
"RunnableEntity" or the "AtomicSoftwareComponentType“ can
implement a "WaitPoint" that blocks the execution of the calling
runnable until the "AsynchronousServerCallReturnsEvent" is
recognized.

Runnables and communication

For example, let's consider the case of an asynchronous call to a remote
operation where the RTE is supposed to trigger a specific "RunnableEntity" when
the operation completes. The description of the corresponding
AtomicSoftwareComponentType would typically contain the following elements:

1. The “AtomicSoftwareComponentType” contains an "RPortPrototype" 'myPort‘
typed by a "PortInterface" that in turn contains the definition of an "Operation-
Prototype" 'remoteOperation'.

2. The "AtomicSoftwareComponentType's" "InternalBehavior" contains at least two
"RunnableEntities": the "RunnableEntity" 'main' is supposed to invoke the
operation; the "RunnableEntity" 'callback' is the one that should be called when
the operation completes.

3. The description of the "RunnableEntity" 'main' contains an
“AsynchronousServerCallPoint” 'invokeMyOperation' referencing the respective
"OperationPrototype" in the "PortInterface" used to type the "PortPrototype"
'myPort'. This implies that the "RunnableEntity" is allowed to invoke this operation
asynchronously.

4. The description of the "AtomicSoftwareComponentType" includes an
“AsynchronousServerCallReturnsEvent” 'myOperationReturns' which references
the previously defined "AsynchronousServerCallPoint" 'invokeMyOperation' out of
"RunnableEntity" 'main'.

5. The description of the “AsynchronousServerCallReturnsEvent” 'myOperation-
Returns' references the "RunnableEntity" 'callback', indicating that the RTE should
trigger the execution of this Runnable when 'myOperationReturns' is raised.

Runnables and communication

Providing an implementation of an operation

A software-component can define an “OperationInvokedEvent” for

each operation inside one of the server P-Ports. This way a

Runnable may respond to such an invocation through the generic

event handling mechanisms described above.

Activation of Runnables: time-driven activation

In many cases, Runnables do not need to be started by the
AUTOSAR OS in response to events related to communication
(e.g. the reception of a response to an asynchronous operation
invocation) but to timing events. Many Runnables will need to run
cyclically with a fixed rate.

The approach taken in the software-component description is to
define so-called "TimingEvents" as special kinds of RTEEvents. So
far, only one kind of timing event has been defined: a simple
"TimingEvent", which has a period as attribute. When the internal
behavior of an atomic software-component requires that the
AUTOSAR OS executes certain Runnables periodically, the
description will define a "TimingEvent" with the desired period.

This "TimingEvent" then contains a reference to the Runnable that
needs to be executed with this period.

Runnables and communication

Runnable execution constraints

Execution order of Runnables of different software-components is
affected by dataflow dependencies between the ports of the
connected components.

The execution order of Runnables according to data-flow
dependencies can (in OSEK/CAN based systems) only be
guaranteed if all affected Runnables are scheduled in one task.

In time-triggered systems (OSEKTime / FlexRay) the execution
order can be guaranteed.

In addition to control-engineering driven data-flow dependencies
there are additional criteria to define the execution-order of
Runnables: for example some initialization Runnables must have
finished executing before other runnables are allowed to start.

These dependencies can be described by
“RunnableExecutionConstraints” which are aggregated to the
“InternalBehavior”.

Runnables and communication

Runnables and communication

Example

The internal behavior of an atomic software-component describes
three Runnables (“init”, “calculate1” and “calculate2”) and the
following execution order constraints are given:

1.Runnable “init” has to terminate before the Runnable “calculate1”
is allowed to start.

1. Additionally it is not allowed that the “calculate2” starts
before “calculate1” has terminated.

This can be specified by the following
“RunnableExecutionConstraints”:

1. Observables: calculate1.start, init.start, init.end
AllowedBehavior: init.start -> init.end -> calculate1.start

2. Observables:
calculate2.start, calculate1.start, calculate1.end
NotAllowedBehavior: calculate1.start -> calculate2.start

Runnables interaction within a component

RunnableEntities within a specific AtomicSoftwareComponentType
typically need to communicate among each other. This implies that
the RTE and/or the AUTOSAR OS need to provide synchronization
mechanisms to the "RunnableEntities" such that safe (in the multi-
threading sense) exchange of data is possible.

Several concepts for implementing communication among
RunnableEntities can be identified.

There are various techniques to provide efficient interaction
between "RunnableEntities“ within one
"AtomicSoftwareComponentType".

Two possible approaches for formal specification of this kind of
communication are:

– Specifying that several "RunnableEntities" belong in a
specific "ExclusiveArea"

– Specifying the data exchanged between the
"RunnableEntities"

Runnables interaction within a component

Communication among "RunnableEntities" can be implemented by
means of "shared memory".

– RunnableEntities" within an

"AtomicSoftwareComponentType“ are allocated to the

same CPU.

Communication among RunnableEntities can then establish a data

flow scheme (a very popular pattern in the application of control

theory to automotive embedded systems). If global variables are
used for establishing inter-RunnableEntity communication they

acquire the semantics of so-called state-messages.

Nevertheless, directly sharing memory between RunnableEntities

requires a serious problem to be solved: the guarantee of data

consistency among communicating "RunnableEntities".

Runnables and communication

Note that this approach closely resembles the communication
principle underlying "DataReadAccess" and "DataWriteAccess".

The counterpart to "DataReadAccess" and "DataWriteAccess"

within the AUTOSAR meta-model is "DataReceivePoint" and

"DataSendPoint". These allow for an immediate access to the
underlying communication item. It should be possible to specify the

same semantics even for communication among

"RunnableEntities“ of the same "AtomicSoftwareComponentType".

The following paragraphs describe some common strategies that

can be used to ensure the required data-consistency. We do not

attempt to describe the pros or cons of these approaches.

Runnables and communication

Scheduling strategy

A first strategy for guaranteeing data consistency of concurrently
accessed variables is based on a defined scheduling strategy:

Execute a "RunnableEntity“ such that it can never be
preempted by another "RunnableEntity“ that might modify the
memory being read by the first one.

As nearly all embedded AUTOSAR OS only allow for a single
instance of each task running at the same time, this can be
achieved by putting all "RunnableEntities" that interact by sharing
memory into a single task.

The task must be instrumented (i.e. the execution of each
"RunnableEntity" must be guarded by a flag or something similar)
such that it is possible to suppress the execution of particular
"RunnableEntities".

Runnables and communication

Runnables and communication

As a possible execution model, an (OSEK) event shall be associated with
each "RunnableEntity" of a (OSEK ECC) task. Then it is easy to guard the
execution of the "RunnableEntity" depending on the corresponding event.
In other words: the task is in wait state until one of the possible events
occur in which case the task is ready for transition into state running. As a
consequence of this transition, the "RunnableEntity" corresponding to the
event is executed. This principle works even in case several events occur
simultaneously.
"RunnableEntities" of a single task can obviously not be executed
concurrently. A "RunnableEntity" can only be executed if other
"RunnableEntities" of the same task have finished their execution. This
could lead to a certain non-deterministic delay between the recognition of
an event and the execution of the corresponding "RunnableEntity". It must
be decided whether this delay can actually be tolerated by a particular
application.
As suggested before, this concept requires the usage of a more advanced
scheduling policy. In particular, the capabilities of OSEK ECC tasks (or
similar, if a non-OSEK OS is used) are a prerequisite for the
implementation of this concept.

Runnables and communication

Mutual exclusion with semaphores

Multi-threaded operating systems provide mutexes (mutual

exclusion semaphores) that protect access to an exclusive

resource that is used from within several tasks.

The RTE could use these OS-provided mutexes to make sure that

the "RunnableEntites“ sharing a memory-space would never run

concurrently. The RTE would make sure the task running the

"RunnableEntity" has taken an appropriate mutex before accessing
the memory shared between the "RunnableEntities".

Runnables and communication

Interrupt disabling

Another alternative would be the disabling of interrupts during the

run-time of "RunnableEntities“ or at least for a period in time

identical to the interval from the first to the last usage of a

concurrently accessed variable in a "RunnableEntity". This
approach could lead to seriously non-deterministic execution

timing.

Runnables and communication

Priority ceiling

Priority ceiling allows for a non-blocking protection of shared

resources. Provided that the priority scheme is static, the

AUTOSAR OS is capable of temporarily raising the priority of a

task that attempts to access a shared resource to the highest
priority of all tasks that would ever attempt to access the resource.

By this means is technically impossible that a task in temporary

possession of a resource is ever preempted by a task that attempts
to access the resource as well.

Runnables and communication

Implicit communication by means of variable copies
Another alternative is the usage of copies of concurrently accessed
variables with state message semantics.

This means in particular that for a concurrently used variable a
copy is created on which a "RunnableEntity" entity can work
without any danger of data inconsistency.

This concept requires additional code to write the value of the
concurrently accessed variable to the copy before the
"RunnableEntity" that accesses the variable is executed.

The value of the copy must be written back to the concurrently
accessed variable after the "RunnableEntity" has been terminated.

Since it would be too expensive and errorprone to manually care
about the copy routines it would be a good idea to leave the
creation of the additional code to a suitable code generator.

Runnables and communication

It is possible to further optimize the process by reducing the
additional code at the beginning and end of each task, for example,
copy routines will only be inserted where appropriate, e.g. a copy
routine for writing the value of a copy back to the concurrently
accessed variable will only be inserted if the "RunnableEntity" has
write access to the variable.

The copy routines have to make sure that the copy process is not
interrupted in order to be capable of consistently copying the values
from and to the shared variable. These periods, however, are
supposed to be very short compared with the overall run-time of the
"RunnableEntity".

Runnables and communication

Further optimization criteria can be applied, for example: it would be perfectly safe
to avoid the creation of copies for runnables that are scheduled in the task with
the highest priority of all tasks that (via contained runnables) access a certain
concurrently accessed variable.

In order to keep the application code free of any dependencies from the code
generation, access to concurrently accessed variables will be guarded by macros
that are later resolved by the code generator.

The presence of the guard macros directly supports the reuse on the level of
source code. The reuse on the level of object code is only possible if the
scheduling scenario (in terms of the assignment of "RunnableEntities" to priority
levels) does not change. This concept can only be implemented properly with the
aid of a code generator if the variables in question can be identified. In other
words: the description of a software component has to expose all concurrently
accessed variables to the outside world.

Runnables and communication

Description possibility 1: "ExclusiveArea“ (critical section)

This section describes how the concept of "ExclusiveAreas" can be
used in the description of the "InternalBehavior" of an
"AtomicSoftwareComponentType". These "ExclusiveAreas" do not
imply a specific implementation (e.g. with mutual-exclusion
semaphores).

They just specify a constraint on the scheduling policy and
configuration of the RTE: If two or more “RunnableEntities” refer to
the same “ExclusiveArea” only one of these "RunnableEntities" is
allowed to be executed while being inside that “ExclusiveArea”. In
other words: these "RunnableEntities" must not run concurrently
(pre-empt each other) while executing inside the “ExclusiveArea”.

An attribute "executionOptimization" can provide hints for ECU
configuration. The possible values are "executionTime" and
"codeSize". The first hints to care for an efficient implementation in
terms of execution time while the latter suggests focusing on code
size.

Runnables and communication

There are in general two ways to use the "ExclusiveAreas".

In the first approach, the formal description specifies that certain
"RunnableEntities“ always run inside an exclusive area.

For example, if the formal description specifies that both
"RunnableEntity" 'r1' and "RunnableEntity" 'r2' run within
"ExclusiveArea“ 's1', the RTE in collaboration with the scheduler
must make sure that "RunnableEntities" 'r1' and 'r2' never run
concurrently; the scheduler should never preempt 'r1' to run 'r2'.

This requirement could be implemented by several of the
implementation strategies described above.

In the second approach, the runnable would explicitly make API-
calls to the RTE within the implementation of the "RunnableEntity"
to enter and leave a specific "ExclusiveArea".

This could, for example, be implemented by means of priority
ceiling

Resource consumption

AUTOSAR SW-Components need to be mapped on ECUs at some
point during the development. The mapping freedom is limited by
the System Constraints and the available resources on each ECU.

The SW-Component description provides information about the
needed resources concerning memory and execution time for each
AtomicSoftwareComponentType. The hardware resources are
going to be used by all software on that ECU, including OS, Basic
SW, RTE, ECU abstraction, CCD, Services.

The resource consumption of the other software on an ECU (OS,
RTE, Basic SW,...) is not covered by the AUTOSAR SW-
Component template explicitly although the template might be
used to capture the memory and execution time consumption of a
specific configuration of the Basic SW.

– Some of these resources are highly dependent on the configuration
actually mapped on the ECU. So an iterative resource description and
estimation is needed to cover the RTE and Basic SW resource needs.

Resource consumption

Resources can be divided into static and dynamic resources. Static
resources can only be allocated by one entity and stay with this
entity. If the required amount of resources is bigger than the
available resources the mapping does not fit physically. ROM is an
example of a spare resource where obviously only the amount of
data can be stored that is provided by the storage capacity.

Dynamic resources are shared and therefore can be allocated
dynamically to different control threads over time. Processing time
is an example, where different "RunnableEntities" are given the
processor for some time.

If some runnable entity uses more processing time than originally
planned, it can lead to functional failure. Also some sections of
RAM can be seen as dynamic resources (e.g. stack, heap which
grow and shrink dynamically).

Resource consumption

The resource consumption is attached to an Implementation of an
AtomicSoftwareComponentType. For each Implementation, there

can be one ResourceConsumption description.

Resource consumption

All resources are described within the ResourceConsumption
meta-class.

ExecutionTime and StackUsage are used to provide information on

the implementation-specific resource usage of the runnables

defined in the “InternalBehavior”.

“PerInstanceMemorySize” provides information regarding the

actual size (in bytes) of the “PerInstanceMemory” defined in the

“InternalBehavior”.

“ObjectFileSection” documents the resources needed to load the

object-file containing the implementation on the ECU.

“HeapUsage” describes the dynamic memory usage of the
component.

Resource consumption

Relation to the hardware description

In this section the relationships between the description methods of
the ECU Resource template and the SW-Component resource
needs are discussed. Only the memory description and the
processing time description are covered.

Memory

The ECU resource template describes the total available memory
due to the hardware characteristics, not the actual implementation
technology. Therefore memory implementation names like
EEPROM, FLASH or DRAM are not used in the description of an
ECU.

The main criteria distinguishing memory is the volatile - non volatile
category. First the attributes for volatile memory are discussed,
then the additional attributes for non volatile memory will be
introduced.

Resource consumption

Execution time

The description mechanism is defined how actual execution times

for specific hardware can be provided.

The ECU Resource template description document introduces a

different description mechanism which is based on some
benchmarking technology.

The execution time is an ASSERTION: a statement about the

duration of the execution of a piece of code in a given situation.

The execution time is NOT A REQUIREMENT on the software-
component, on the hardware or on the scheduling policy.

Resource consumption

A description of the execution time of a runnable entity of an
implementation of an atomic software-component should include:

– the nominal execution time (“0.000137 s”) or a range of times

– a description of the entire context in which the execution-time
measurement or analysis has been made

– some indication of the quality of this measurement or estimation

The goal thereby is that the template finds a good compromise

between flexibility and precision.

The description must be flexible enough so that the entire range

between analytic results (“worst-case execution time”) and rough

estimates can be described.

The description should be precise enough so that it is entirely clear

what the relevance or meaning of the stated execution time is. This

implies that a large amount of context information needs to be

provided.

Resource consumption

The execution time can be described for a specific sequence of
assembly instructions. It does not make sense to describe the
execution time of a runnable provided as source-code.

In addition, the execution-time of such a sequence of assembly
instructions depends on:

– the hardware-platform

– the hardware state

– the logical (software) context

– execution-time of external pieces of code called from the
runnable

These dependencies are discussed in detail in the following.

Resource consumption

Dependency of the execution time on hardware

The execution-time depends both on the CPU-hardware and on
certain parts of the peripheral hardware:

– The execution time depends on a complete description of
the processor, including:

– kind of processor (e.g. „PPC603“)

– the internal Processor frequency („100 MHz“)

– amount of processor cache

– configuration of CPU (e.g. power-mode)

Aspects of the periphery that need to be described include:

– external bus-speed

Resource consumption

MMU (memory management unit)

– configuration of the MMU (data-cache, code-cache, write-
back,...)

– external cache

– memory (kind of RAM, RAM speed)

In addition, when other devices (I/O) are directly accessed „as
memory“, the speed of those devices has a potentially large
influence.

On top of this, the ECU might provide several ways to store the
code and data that needs to be executed. This might also have a
large influence on the execution time.

For example:

– execution of assembly instructions stored in RAM vs.
execution out of ROM may have different execution times

– when caching is present, the relative physical location of
data accessed in memory influences the execution time

Resource consumption

Dependency on hardware state

In addition to the static configuration of the hardware and location
of the code and data on this hardware, the dynamically changing
state of the hardware might have a large influence on the
execution time of a piece of code : some examples of this
hardware state are:

– which parts of the code are available in the execution-
cache and what parts will need to be read from external
RAM

– what part of the data is stored in data-cache versus must
be fetched from RAM

– potentially, the state of the processor pipeline

Despite the potential importance of this initial hardware-state when
caching is present, it is almost impossible and definitely impractical
to describe this hardware state.

Therefore it is important and clear that AUTOSAR does not
provide explicit attributes for this purpose.

Resource consumption

Dependency on logical context

This logical context includes:

– the input parameters with which the runnable is called

– the logical “state” of the component to which the runnable

belongs (or more precisely: the contents of all the memory

that is used by the runnable)

While a description of the input-parameters is relatively straight-

forward to specify, it might be very hard to describe the entire

logical state that the runnable depends on.

In addition, in certain cases, one wants to provide a specific (e.g.
measured or simulated) execution time for a very specific logical

context; whereas in other cases, one wants to describe a “worst-

case execution time” over all valid logical contexts or over a subset

of logical contexts.

Resource consumption

Dependency on external code

Things get very complex when the piece of code whose execution
time is described makes calls into (“jumps into”) external libraries.

To deal with this problem, we could take one of the following
approaches:

– Do not support this case at all

– Support a description of the execution time for a very specific version
(again at object-code level) of the libraries. The exact versions would be
described together with the execution time.

– Conceptually, it might be possible to explicitly describe the dependency
on the execution-times of the library. This description would include:

• the execution time of the code provided by the component itself

• a specification of which external library-calls are made

Option 3 is deemed impractical and is not supported.

Option 2 however is important as many software-components
might depend on very simple but very common external libraries (a
math-library that provides floating point capability in software).

Resource consumption

Description-model for the execution time

The description of the implementation of a component references
the description of the internal behavior of the atomic software-
component that is implemented The description of the internal
behavior describes all the "runnable entities" of the component.

Each description of such a runnable entity (of a specific
implementation) can include an arbitrary number of execution-time
descriptions. Thereby this execution time description may also
depend on code or data variant of the implementation.

It is expected that many runnable entities will not have execution-
time descriptions. For runnable-entities that do have execution-
time descriptions, the componentimplementor could provide
several execution-time descriptions: for example one per specific
ECU on which the implementation can run and on which the time
was measured or estimated.

Resource consumption

How the execution time is part of the overall description of the
implementation of a component.

Resource consumption

