An introduction to AUTOSAR

AUTOSAR Consortium

45 Associate
Members

10 Core Partners

e DAIMLERCHRYSLER) BOSCH
VOLKSWAGEN AG @- (@nfinental*

e

L3

PSAPEUGEDTCImOiém [[At
SIEMENS VEQ — MANDO
TOYOTA o I o m 2 r I w
@ atrtecom
91 Premium Members preh WINDRIVER
DELPHI P
HONDA i s == oxcowss 71 JSPACE: “freescale

f- DENSO ElEKTRQFlT o,
LiveDevic95 -
mlc!'ﬂ_n”;;g ETAS T -.—7[,-’;
<) The MathWorks —

TlAutomotive NEC

«+ L« «Systems-
tusiwARE Ceh RENESAS
- you fmagine

AUTOSAR

What is AUTOSAR? AUTOSAR

AUTOSAR - AUTomotive Open Systems ARchitecture

Middleware and system-level standard, jointly developed by
automobile manufacturers, electronics and software suppliers
and tool vendors.

More than 100 members

Motto: “cooperate on standards, compete on implementations”
Reality: current struggle between OEM and Tier1 suppliers

Target: facilitate portability, composability, integration of SW
components over the lifetime of the vehicle

Standardization of Components and Interfaces

The software implementing the automotive functionality is encapsulated
in software components. Standardization of the interfaces is central to
support scalability and transferability of functions. Any standard-
conformant implementation of a software component can be integrated
with substantially reduced effort in a system.

The standardization could be developed incrementally towards:

— Level of abstraction
» Functional aspecits
« Behavior and implementation aspects
— Level of decomposition
» Low degree of decomposition of the functional domain
» High degree of decomposition of the functional domain
— Level of architecture definition
« Terminology
« Standardized data-types
» Partial description of interfaces (without semantics)
« Complete description of interfaces (without semantics)
« Complete description of interfaces (with semantics)
 Partial definition of the functional domain
« Complete definition of the functional domain

Functional domains

The specification of functional interfaces is divided into 6
domains:

— Body/Comfort

— Powertrain

— Chassis

— Safety

— Multimedia/Telematics

— Man-machine-interface

The domains could be differently handled due to intellectual
property rights issues and decomposition levels.

In the first phase of AUTOSAR only in the domains
body/comfort, chassis, and powertrain results can be expected.
All others have lower priority in the first phase.

AUTOSAR Architecture

SW-C

Description
L

L D-MS
dvsoLnvy

SW-C

Description
T

Z D-MS
dvsoLnv

SW-C

Description
T

S

€M
dvsoLny

SW-C

Description

u D'MS
dvsoLnv

Virtual Functional Bus

4L

Deployment tools

¢

m
n:::|
c

Z D-MS
dvsoLny
€ D-MS
dvsoLny

RTE

ECU1
2<
a3
- >
~
RTE
Basic Software

Basic Software

bystem
Constraint
Description
ECUI1
2<
63
s >
~
RTE

o

o

Basic Software

Gateway

o

AUTOSAR Architecture

« AUTOSAR SW-C

The AUTOSAR Software Components encapsulate an
application which runs on the AUTOSAR infrastructure. The
AUTOSAR SW-C have well-defined interfaces, which are
described and standardized.

— SW-C Description

For the interfaces as well as other aspects needed for the integration of
the AUTOSAR Software Components, AUTOSAR provides a standard
description format (SW-C Description).

SW-C Description

-

L O-MS
dvsoLnv

&

AUTOSAR Architecture

* Virtual Functional Bus (VFB)

The VFB is the sum of all communication mechanisms (and
interfaces to the basic software) provided by AUTOSAR on an
abstract (technology independent) level. When the connections
for a concrete system are defined, the VFB allows a virtual
iIntegration in an early development phase.

SW-C SW-C SW-C SW-C

Description Description Description Description
A3 &l A3 a3
- 2> N > w > =
~ = P =~

__

Virtual Functional Bus

AUTOSAR Architecture

« System Constraint and ECU Descriptions

In order to integrate AUTOSAR SW-Components into a
network of ECUs, AUTOSAR provides description formats for
the system as well as for the resources and the configuration of
the ECUs.

4L

bystem
EC |::> Deployment tools <:| Constraint
Descrip Description

1L

AUTOSAR Architecture: Mapping on ECUs

AUTOSAR defines the methodology and tool support to build a
concrete system of ECUs. This includes the configuration and
generation of the Runtime Environment (RTE) and the Basic
Software (RTOS) on each ECU.

* Runtime Environment (RTE)

From the viewpoint of the AUTOSAR Software Component, the
RTE implements the VFB functionality on a specific ECU.

|::> Deployment tools <:|

m
n:::|
c

Z J-MS
dvsoLnv
€ D-MS
dvsoLny

RTE

Basic Software

o

AUTOSAR Architecture

« Basic Software

The Basic Software provides the infrastructure for execution
on an ECU.

m
(@)
c

Z D-MS
dvsoLnv

€ D-MS
dvsoLny

| RTE |

| Basic Software |

o

AUTOSAR Architecture

A fundamental concept of AUTOSAR is the separation between:
-application and
‘infrastructure.

An application in AUTOSAR consists of Software Components
iInterconnected by connectors

passenger_door

>* driver_door

ComingHome
>— rain_light_condition Leawnhg::IGmE if_light_request
- T c

light_request '—C— - 'O' Light

= Master

AutomaticLight if_light request Im
Ci:?f:ml />~ outside_brightness
’
/
7

outside_brightness _Ey

if_outside brightness

AUTOSAR Component

The generic “AUTOSAR Component” concept
« AUTOSAR Software Component
Sensor/Actuator Software Component (special case).

Composition

— a logical interconnection of components packaged as a
component. In contrast to the Atomic Software Components,
the components inside a composition can be distributed over
several ECUs.

ECU Abstraction
Complex Device Driver
AUTOSAR Services.

AUTOSAR Component

Each AUTOSAR Software Component encapsulates part of
the functionality of the application.

— AUTOSAR does not prescribe the granularity of Software
Components. Depending on the requirements of the application
domain an AUTOSAR Software Component might be a small,
reusable piece of functionality (such as a filter) or a larger block
encapsulating an entire sybsystem.

The AUTOSAR Software Component is an "Atomic
Software Component"

Atomic means that the each instance of an AUTOSAR
Software Component is statically assigned to one ECU.

AUTOSAR Components

Implementing an AUTOSAR Software Component

AUTOSAR does not prescribe HOW an AUTOSAR
Software Component should be implemented
— a component may be handwritten or generated from a model

AUTOSAR Components

Shipping an AUTOSAR Software Component

A shipment of an AUTOSAR Software Component consists
of

« a complete and formal
Software Component

e _ o Software
Description which specifies Component
how the infrastructure must be Description
configured for the component,
and

« an implementation of the
Component

component, which could be
provided as "object code" or
"source code".

Implementation

AUTOSAR Components: Description

The AUTOSAR Software Component Description
contains:

the operations and data elements that
the software component provides and
requires

— described using the Portinterface concept

the requirements on the infrastructure, —
the resources needed by the software Component
component (memory, CPU-time, etc.), Description

iInformation regarding the specific
Implementation of the software
component.

The structure and format of this
description is called “software component
template”.

AUTOSAR Components

A source code component implementation is independent
from
— the type of microcontroller of the ECU and the
type of ECU on which the component is
mapped
« The AUTOSAR infrastructure takes care of

providing the software component with a

standardized view on the ECU hardware Component

— the location of the other components with Implementation
which it interacts. The component description

defines the data or services that it provides or
requires. The component doesn’t know if they
are provided from components on the same
ECU or from components on a different ECU.

— the number of times a software component is
instantiated in a system or within one ECU

AUTOSAR Components: description levels

The highest (most abstract)
description level is the Virtual
Functional Bus.

Here components are described
with the means of datatypes and
interfaces, ports and connections
between them, as well as
hierarchical components. At this
level, the fundamental
communication properties of
components and their
communication relationships among
each other are expressed.

— Software components

— Compositions

— Interfaces

AtomicSoftw areComponentType

D
+component /{\ 1

internalBehavior

+behavior /\ 1

implementation

AUTOSAR Components

Description of components on
RTE level: The middle level allows
for behavior description of a given
component. This behavior is
expressed through RTE concepts,
e.g. RTE events and in terms of
schedulable units. For instance,
for an operation defined in an
interface on the VFB, the behavior
specifies which of those units is
activated as a consequence of the
iInvocation of that operation.

— Runnables

— Events

— Interaction with the Run
Time Environment

AtomicSoftw areComponentType

+compc-nentf‘ 1

InternalBehavior

+behavior/\ 1

implementation

AUTOSAR Components

Descriptions of components on
implementation level: The lowest
(most concrete) level of
description specifies the
implementation of a given
behavior. More precisely, the
schedulable units of such a
behavior are mapped to code.
The two layers above constrain
the RTE API that a component is
offered, the implementation now
utilizes this API.
— Component
implementation
— Resource consumption of
SW-Components

AtomicSoftw areComponentType

+compc-nentf‘ 1

imternaiBehavior

+behavior /\ 1

implementation

Component-oriented design

What is a SW component?

A reusable self-contained artefact implementing a function with

given properties

SW Component

4

Structure

N

Behavior

Resource and
non-functional
requirements

Component-oriented design

Component structure
— Key concepts: information hiding and encapsulation

Sw

Resource

Component == and non-

functional

&

Structure

Y

Behavior

requirements

Data ports

port_in int wheel_index)

Asynchronous, no transfer of control
port_out double GetRotSpeed

SW Component

rovided interface

SW Component

Does not suffice for
encapsulation!

H H

|

SW Component

Required interface

Component-oriented design

Component structure
— Key concepts: information hiding and encapsulation

Method signature(s)
Synchronous call, transfer of control
double GetRotSpeed (int wheel_index)

SwW Resource
Component == and non-

functional

reqauirements

Structure Behavior

Internal behavior
Data ports
Asynchronous, no transfer of control
port_out double GetRotSpeed SyI‘IChI‘OﬂOUS
port_in int wheel_index) model (FSM)

SW Component

Component-oriented design

Component structure
— Key concepts: information hiding and encapsulation

Method signature(s)
Synchronous call, transfer of control
double GetRotSpeed (int wheel_index)

SwW Resource
Component == and non-

functional

reauirements
Structure Behavior

R H R

PRECONDITIONS Internal behavior

POSTCONDITIONS

INVARIANTS

design by
4‘_‘ U, 'Jﬁ contract

SW Component

Component-oriented design

Component structure
— Key concepts: information hiding and encapsulation

Sw

Resource

Component == and non-

functional

&

Structure

reqauirements
Behavi:I

SW Component

T

\ Communication
behavior

SW Component

Component-oriented design

Component structure
— Key concepts: information hiding and encapsulation

Sw

Component =

Resource
and non-
functional

&

Structure

requirements

hY

Behavior

SW Component

U H

—F

\

[]

-
e '
- l
—_—T——— 1
1
1
'

H
/
JI—II—II—IL
°

Task and resource
— description

=

UHHH
[
S e

SW Component

AUTOSAR Components

Components dependencies are described in form of interfaces
and ports, no internal, hidden dependencies may exist.

Therefore, components are in theory exchangeable as long as
they implement the same logic and provide the same public
communication interface to the remaining system.

Once a component is defined with the help of the software
component template, a new component type has been defined.
Such a component can be used an arbitrary number of times
within the system as well as in different systems.

Components are developed against the virtual functional bus, an
abstract communication channel without direct dependency on
ECUs and communication busses and they must not directly call

the operating system or the communication hardware.

— As a result, they are transferable and can be deployed to ECUs very
late in the development process.

Components, Ports and Interfaces

A component has well-defined ports, through which the
component can interact with other components.

A port always belongs to exactly one component and
represents a point of interaction between a component and
other components.

To define the services or data that are provided on or
required by a port of a component, the AUTOSAR Interface
concept is introduced.

The AUTOSAR Interface can be

— Client-Server Interface defining a set of operations that
can be invoked

— Sender-Receiver Interface, for data-oriented
communication

Components, Ports and Interfaces

A port can be
— PPort (provided interface)
— RPort (required interface)

When a PPort provides an interface, the component to
which the port belongs

— provides an implementation of the operations defined in the
Client-Server Interface

— generates the data described in a data-oriented Sender-
Receiver Interface.
When an RPort of a component requires an AUTOSAR
Interface, the component can
— invoke the operations when the interface is a Client-Server

— read the data elements described in the Sender-Receiver
Interface.

Communication Patterns: summary

elementary communication patterns
— Client-Server
— Sender-Receiver

Interfaces specity

— what information sender receiver communication
transports

— which services with which arguments can be called
by client-server communication

The formal description of the interface is in the software
component template, including also data types that can be
used and interface compatibility.

The detailed behavior of a basic communication pattern is

specified by attributes. With those attributes e.g. the length

of data queues and the behavior of receivers (blocking,

gop-blgcking, etc.) and senders (send cyclic, etc.) can be
efined.

Client-server communication

The server is a provider and the client is a user of a service.

The client initiates the communication, requesting that the server
performs a service, transferring a parameter set if necessary.
The server waits for incoming communication requests from a
client, performs the requested service and dispatches a
response to the client’s request.

The direction of initiation is used to categorize whether an
AUTOSAR Software Component is a client or a server. A single
component can be both a client and a server depending on the
software realization.

After the service request is initiated and until the response of the
server is received The client can be

— blocked (synchronous communication)
— non-blocked (asynchronous communication).

Client-server communication: notation

An example of client-server communication in the
composition of three software components and two
connections in the VFB model view.

AUTOSAR

. requeste
SW-C [:l—(_____ :

client1

-i-
I D
=
=
|
E:B
=,
]

Ll

AUTOSAR
SW-C
server

AUTOSAR

sne | [} == |
ueste

client2

Sender-receiver communication

Model for the asynchronous distribution of information
where a sender distributes information to one or several
receivers.

The sender is not blocked (asynchronous communication)
and neither expects nor gets a response from the receivers
(data or control flow), the sender just provides the
information and the receivers decides autonomously when
and how to use it

It is the responsibility of the communication infrastructure to
distribute the information.

The sender does not know the identity or the number of
receivers

Sender-receiver communication

an example of how sender-receiver communication is
modeled in AUTOSAR

receive_information AUTOSAR
i)—[:l SW-C
| receiver 1
|
send_information !
AUTOSAR _ ' I
sw_c [m ------ *
sender |
|
|
|
|
AUTOSAR
>_[] sSW-C

_ . receiver 2
receive_in formation

AUTOSAR Components, Interfaces and ports

The visual representation of components, ports and
interfaces in a component model

port characterised by port interface

AUTOSAR-SW-
Component

= provide port, interface client-server

_< require port, interface: sender-receiver

provide port, interface: sender-receiver

e O-
]\

connecfor

—O provide port, interface client-server

AUTOSAR Components: connections

Two components are eventually connected by hooking up a
p-port of one component to a compatible r-port of the other
component.

— The model shows that it is allowed to define a component without
any ports, which seems counterintuitive, this is only reasonable
for components that are totally self-contained.

Whether ports are actually compatible is described by a
“Portinterface”. As will be shown later, these port interfaces
declare services or data elements that are required and
provided by the respective poris.

AUTOSAR Components: connections

A port interface has a single attribute called “isService”. This flag
indicates, whether service or data described in the interface is
actually provided by AUTOSAR services instead of another
AUTOSAR component.

[FC O]

AUTOSAR Components: communication behavior

AUTOSAR software components communicate via the
Virtual Functional Bus. They need ways to express
requirements and capabilities with respect to exchanging
data, which is currently possible through two kinds of
attributes:

Communication attributes, allow specifying parameters of
the communication that affect the generation of the RTE or
the actual communication taking place at runtime. An
example for such an attribute is the aforementioned transfer
time over a connector.

Application level attributes, allow describing properties of
exchanged data that do not affect the RTE generation, but
are indicate to the developer how data needs to be
processed. An example for this kind of attribute is a flag,
whether data is “filtered” or “raw”..

AUTOSAR Components: Sensor/Actuator Components

Sensor/Actuator Components are special AUTOSAR Software
Components which encapsulate the dependencies of the
application on specific sensors or actuators.

The AUTOSAR infrastructure takes care of hiding the specifics
of the microcontroller (this is done in the MCAL, the
microcontroller abstraction layer, which is part of the AUTOSAR
infrastructure running on the ECU) and the ECU electronics (this
is handled by the ECU-Abstraction which is also part of the
AUTOSAR Basic Software).

AUTOSAR Components: Sensor/Actuator Components

Typical conversion process from physical signals to
software signals (e.g. car velocity) and back (e.g. car light).

Physical Interface Electrical Interface: Electrical Interface:
i |ensor :[D..ZODmA] UECUE [0.5V]
e.g. i i ECU i |.IC
Car velocity “"E'“'" Sensor “":r'“" Electronics ----E--- Peripherals Hardware

get! v() get_|_ECU(velocity_sensor) H
Application [<1©7 sensor [<O i
" . P10, get()
SW-C 1 i+ (Component| —
E i E MCAL
set_lamp() set_|_ECU(light_actor) DIO_$et() (HAL Driver)
Application {(} Actuator {'(} ECU :
SW-C 2 i (Component| Abstraction :
i : ECU i puC Hardware
e.g. I e =YY Lo __
Car light *J Actuator j«-- Electronics|* | Peripherals
lecy [0.2A] U”C [0.5V]

--» HW/phys. Signal —C Require Port' O— Provide Port' «—=aApP| 0

AUTOSAR Components: Sensor/Actuator Components

The AUTOSAR infrastructure does NOT hide the specifics of
sensors and actuators.

The dependencies on a specific sensor and/or actuator are dealt
with in "Sensor/Actuator Software Component", which is a
special kind of Software Component. Such a component is
independent of the ECU on which it is mapped but is dependent
on a specific sensor and/or actuator for which it is designed.
— For example, a "Sensor Component" typically inputs a software
representation of the electrical signal at an input-pin of the ECU

(e.g. a current produced by the sensor) and outputs the
physical quantity measured by the sensor (e.g. the car speed).

Typically, because of performance issues, such components will
need to run on the ECU to which the sensor/actuator is
physically connected.

The Virtual Function Bus (VFB)

The virtual functional bus is the abstraction of the AUTOSAR
Software Components interconnections of the entire vehicle. The
communication between different software components and
between software components and its environment (e.g.
hardware driver, OS, services, etc.) can be specified
independently of any underlying hardware (e.g. communication
system). The functionality of the VFB is provided by
communication patterns.

he Virtual Function Bus (VFB)

From the VFB view ports of AUTOSAR Software Components,
Complex Device Drivers, the ECU Abstraction and AUTOSAR
Services can be connected. Complex Device Drivers, the ECU
Abstraction and AUTOSAR Services are part of the Basic

Software.

AUTOSAR
Software
Component

Interface

ECU
Firmware

Standard
Software

API 2
J vFB&RTE
relevant

| | e
Application Actuator Sensor
Software Software Software
Component Component Component
_ 1
AUTOSAR AUTOSAR AUTOSAR
Interface Interface Interface
AUTOSAR AUTOSAR Sfﬂ.l‘.’grs"f;d
Interface Interface Interface
Complex ECU .
Device Abstraction Services
Drivers

|

Application
Software

Component

AUTOSAR
Interface

]

ECU

SW Architecture

AUTOSAR
Software
Component|
el

Different
Kinds of
Interfaces

ECU
Firmware

Standard
Software

API 2
VFB & RTE
relevant

APl 1
RTE relevant

| gL

APl 3 Private
Interfaces inside
Basic Software

possible

Application
Software
Component

Actuator
Software
Com ponent

Sensor
Software
Com ponent

AUTOSAR AUTOSAR AUTOSAR
Interface Interface Interface

AUTOSAR

Software

Application
Software
Component

AUTOSAR
Interface

AUTOSAR Runtime Environment (RTE)

| §

| I i I
! Standardized ! 5‘:5.?;': :;d : Standardized i
] Interface : leTEE ! Interface :
| | |
Services Communication
I :' “Standardized i Standardized |
I %’ i ! Interface | Interface !
-
=1
Operating | ?L] '
System '8 = :
| ® 1 :
a
__ |

ECU-Hardware

AUTOSAR
Interface

ECU
Abstraction

1 Standardized
| Interface

i Standardized
| Interface

Microcontroller
Abstraction

AUTOSAR
Interface

Complex
Device
Drivers

ECU Architecture - Layered Software Architecture

A layered architecture has been developed within AUTOSAR to
enable a clear and structured interface definition and a well defined
abstraction of the hardware.

The architecture is structured in 5 layers plus the Complex Drivers.

Application Layer

AUTOSAR Runtime Environment (RTE)

AUTOSAR Architecture Layers

AUTOSAR Software
This layer consists of AUTOSAR Software Components that are
mapped on the ECUs.

All interaction between AUTOSAR Software Components is
routed through the AUTOSAR Runtime Environment. The
AUTOSAR Interface specification assures the connectivity.

AUTOSAR Runtime Environment

The AUTOSAR Runtime Environment (RTE) acts as a system-
level communication center for inter- and intra-ECU information
exchange.

Application layer

AUTOSAR Runtime Environment

Services layer

ECU Abstraction layer

Complex Drivers

Microcontroller Abstraction Layer

Microcontroller

AUTOSAR Runtime Environment

The RTE is the runtime representation of the Virtual
Function Bus for a specific ECU.

The RTE provides a communication abstraction to AUTOSAR
Software Components providing the same interface and services
for inter-ECU (using CAN, LIN, Flexray, MOST, etc.) or intra-
ECU communication.

As the communication requirements of the software components
are application dependent, the RTE needs to be tailored. It is
therefore very likely, that the main parts of RTE will be generated
and tailored to provide desired communication services while still
being resource-efficient. Thus, the RTE will likely differ between
one ECU and another.

— The RTE is typically tool-generated and statically configured

AUTOSAR Runtime Environment

The AUTOSAR Runtime Environment has the responsibility to
provide a uniform environment to AUTOSAR Software
Components to make the implementation of the software
components independent from communication mechanisms and
channels.

The RTE achieves this by mapping the communication
relationships between components, that are specified in the
different templates, to a specific intra-ECU communication
mechanism, such as a function call, or an inter-ECU
communication mechanism, such as a COM message which
leads to CAN communication.

AUTOSAR Runtime Environment

Access to ports from a software component implementation

The implementation of an AUTOSAR Software Component is not
allowed to use the communication layer, for example OSEK
COM, directly.

To communicate with other software components it uses ports
and client-server communication or sender-receiver
communication.

The RTE generator is responsible for creating the appropriate
language-dependant APIs based on the definition of the
interface of the component in the Software Component
Template.

The API has to be the same independent from the mapping of
the components, i.e. the component's code must not be changed
when the mapping is changed.

The APl names are derived from the XML files and conform to a
naming convention.

AUTOSAR Runtime Environment

Client SenderReceiverinterface WiperWasher

Contains
DataElement start

wiperWasher | H o St cmd
Implementation of Client Runnable run1: Implementation of WiperWasher Runnable run1:
Rte_Runnable_run1() { Rte_Runnable_run1() {
é;ce_Write_WiperWasher_star‘t{..) v = Rte_Read_cmd_start(...);

AUTOSAR Runtime Environment

Implementation of connectors

The RTE generator is also responsible for generating code,
which implements the connectors between the ports.

This generated code is dependant on the mapping of the
software components to ECUs.

If the connector connects two components on the same ECU a
local communication stub can be generated.

Otherwise, a stub that uses network communication must be
generated.

Intra-ECU connector Inter-ECU connector

Rte_Write_Client_wiperWasher_start(...) { Rte_Write_Client_wiperWasher_start(...) {
modify variable B "~ access COM

} }

AUTOSAR Runtime Environment

The mapping from a connector to a communication stub must
conserve the semantics of this connector independent from the
used communication medium.

The communication stub is also responsible for parameter
marshalling. This includes serializing complex data to a byte
stream. But endian conversion (if any is necessary) is delegated
to the communication module of the Basic Software.

Lifecycle management

The RTE is responsible for the lifecycle management of
AUTOSAR Software Components. It has to invoke startup and
shutdown functions of the software component.

AUTOSAR Runtime Environment

Access to Basic Software

An AUTOSAR Software Component is not allowed to access
Basic Software directly.

Firstly, the access to services, to the ECU abstraction, or to
Complex Device Drivers is abstracted via ports and AUTOSAR
Interfaces.

With respect to the component implementation, the RTE
provides appropriately generated APIs for Basic Software
access.

Multiple Instantiations of software components
The RTE shall support multiple instantiations of software
components. The basic intention of multiple instantiation is to
avoid code duplication if possible. Furthermore different private
states of multiple instances shall be supported.

— butin AUTOSAR R2.0 this feature is cancelled !

AUTOSAR Architecture Layers

AUTOSAR Basic Software

Basic Software is the standardized software layer, which
provides services to the SW Components. It does not fulfill
any functional job and is situated below the AUTOSAR
Runtime Environment. It contains

Standardized components

— Services including diagnostic protocols; NVRAM, flash and
memory management.

— Communication the communication framework (e.g. CAN,
LIN, FlexRay...), the I/O management, and the network
management.
ECU specific components.
— Operating system
— Microcontroller abstraction
— Complex Device Drivers

AUTOSAR — Basic software: Operating system

AUTOSAR includes requirements for an AUTOSAR Operating
System. The OS

— is configured and scaled statically,

— is amenable to reasoning of real-time performance, provides a
priority-based scheduling, provides protective functions at run-
time, and

— is hostable on low-end controllers with and without external
resources.

It is assumed that some domains (e.g. telematic/infotainment)
will continue to use proprietary OSs. In these cases the
interfaces to AUTOSAR components must still be AUTOSAR
compliant (the proprietary OS must be abstracted to an
AUTOSAR 0OS).

The standard OSEK OS (ISO 17356-3) is used as the basis for
the AUTOSAR OS.

Basic Software structure

The layered architecture has been further refined in the
area of Basic Software. Around 80 Basic Software modules
have been defined (11 main blocks plus Complex Drivers).

IE===]

Application Layer

AUTOSAR Runtime Environment (RTE)

Microcontroller

AUTOSAR — Basic software: microcontroller abstr.

Access to the microcontroller registers is routed through the
Microcontroller Abstraction layer (MCAL).

MCAL is a hardware specific layer that ensures a standard
interface to the Basic Software. It manages the microcontroller
peripherals and provides the components of the Basic Software
with microcontroller independent values. MCAL implements
notification mechanisms to support the distribution of commands,

responses and information to processes. It can include
— Digital 1/0 (DIO),
— Analog/Digital Converter (ADC),
— Pulse Width (De)Modulator (PWM, PWD),
— EEPROM (EEP),
— Flash (FLS),
— Capture Compare Unit (CCU),
— Watchdog Timer (WDT),
— Serial Peripheral Interface (SPI), and
— 12C Bus (lIC).

Microcontroller abstraction layer

The Microcontroller Abstraction Layer is the lowest layer of the
Basic Software. It contains drivers, with direct access to the uC
internal peripherals and memory mapped pC external devices.

Group of
Software
| modules of
Microcontroller Drivers Memory Drivers Communication Drivers /0 Drivers - similar
type
1B
5 z0 z| & g 5 &
o - L - (a] [m] = e = = e] |1 e
2ls)] £ ¢ sls0s13 1 B BLF: ABFABARIE o
al g =} = k= g 8| @ o £ & = EPs) 5 Ef B Software
= I 5 @ SlLjo) 2 >z B SBIz=lololkE module
o 3] o 3 o T w w £ = =y m o = a = 5
@ T = = E © - = o I = o < = O
2 SHE]lE % =
] = @
=

internal
| peripheral

Microcontroller device

EEFROM

=
-l oC5
=] Ub_;s
=l =79
Lo

Microcontroller abstraction layer

Microcontroller Abstraction Layer
The Microcontroller abstraction layer is subdivided into 4 parts:
— 1/O Drivers
Drivers for analog and digital I/O (e.g. ADC, PWM, DIO).
— Communication Drivers
Drivers for ECU onboard (e.g. SPI, 12C) and vehicle
communication (e.g. CAN). OSI-Layer: Part of Data Link
Layer.
— Memory Drivers
Drivers for on-chip memory devices (e.g. internal Flash, internal
EEPROM) and memory mapped external memory devices
(e.g. external Flash).
— Microcontroller Drivers

Drivers for internal peripherals (e.g. Watchdog, Clock Unit) and
functions with direct yC access (e.g. RAM test, Core test).

ECU Abstraction layer

The ECU Abstraction Layer provides a software interface to the
electrical values of any specific ECU in order to decouple higher-
level software from all underlying hardware dependencies.

Services layer

ECU Abstraction layer

Complex Drivers

Microcontroller Abstraction Layer

Microcontroller

ECU Abstraction layer

I/O Hardware Abstraction:
A group of modules which abstracts from the location of
peripheral |/O devices (on-chip or on-board) and the ECU
hardware layout (e.g. uC pin connections and signal level
Inversions).
The 1/0O hardware abstraction does not abstract from the
sensors/actuators! I/O devices are accessed via an I/O signal
Interface.
The task of this group of modules is
— to represent I/O signals as they are connected to the
ECU hardware (e.g. current, voltage, frequency), and
— to hide ECU hardware and layout properties from higher
software layers.

ECU Abstraction layer

An example:

I/O Signal Interface

Driver for ext. Driver for ext.
ADC ASIC /O ASIC

ADC Driver

ko] o
E 2
iﬁ (]
= o
w (]

ECU Abstraction layer

Communication HW abstraction

A group of modules which abstracts from the Ilocation of
communication controllers and the ECU hardware layout. For all
communication systems a specific communication hardware
abstraction is required (e.g. for LIN, CAN, MOST, FlexRay).
— Example: An ECU has a microcontroller with 2 internal CAN
channels and an additional on-board ASIC with 4 CAN

controllers. The CAN-ASIC is connected to the microcontroller via
SPI.

The communication drivers are accessed via bus specific
interfaces (e.g. CAN Interface). That means the access to the CAN
controller should be regardless of whether it is located inside the
microcontroller, externally to it, or whether it is connected via SPI.

The task of this group of modules is to provide equal mechanisms
fo access a bus channel regardless of its location (on-chip / on-
board).

ECU Abstraction layer

An example:

CAN
Trans-
ceiver
Driver

DIO Driver

CAN Interface

Driver for ext.

CAN ASIC

SPIHandler

CAN Driver

ECU Abstraction layer

Memory HW Abstraction -

A group of modules which abstracts from the location of
peripheral memory devices (on-chip or on-board) and the
ECU hardware layout.

— Example: on-chip EEPROM and external EEPROM devices

should be accessible via an equal mechanism.

The memory drivers are accessed via memory specific
interfaces (e.g. EEPROM Interface). The task of this group
of modules is to provide equal mechanisms to access
iInternal (on-chip) and external (onboard) memory devices.

ECU Abstraction layer

An example:

Memory Abstraction Interface

Flash
EEFROM Abstraction EEFROM

Emulation

External
EEFROM Driver

5 @
= n:g cnO
o . o E bir]
E w o E'ﬁ
| =
Z T

ECU Abstraction layer

Onboard Device Abstraction

Contains drivers for ECU onboard devices which cannot be seen
as sensors or actuators like system basic chip, external
watchdog etc. Those drivers access the ECU onboard devices
via the uC abstraction layer.

The task of this group of modules is to abstract from ECU
specific onboard devices.

ECU Abstraction layer

An example:

Watchdog
Interface
Driver for System

Basic Chip External
Watchdog
Driver

O ©
T = =
c © -
© .= O
£5 o
w O

Service layer

The service layer consists out of 3 different parts:
Communication Services

Memory Services

System Services

Communication
Services

Service layer

Communication Services

The communication services are a group of modules for
vehicle network communication (CAN, LIN, FlexRay and
MOST). They are interfacing with the communication
drivers via the communication hardware abstraction. The
task of this group of modules is

— to provide a uniform interface to the vehicle network for
communication between different applications,

— to provide uniform services for network management,

— to provide a uniform interface to the vehicle network for
diagnostic communication, and

— to hide protocol and message properties from the
application.

Service layer

Generic structure

DCM
AUTOSAR Diagnostic
COM Com.

Manager

PDU Router

IPDU

Multiplexer |—

Color code: Bus specific modules are marked gray.

Service layer

An example
(CAN bus):

DCM
Diagnostic
Com.
Manager

AUTOSAR
COM

PDU Router

IPDU

multiplexer |7

DIO Driver SPIHandler ’7
Driver

External
CAN Controller

Memory Services

Service layer

Memory Services

A group of modules responsible for the management ot non
volatile data (read/write from different memory drivers). The
NVRAM manager provides a RAM mirror as data interface to the
application for fast read access.

The task of this group of modules is
— to provide non volatile data to the application in a uniform way,
— to abstract from memory locations and properties, and

— to provide mechanisms for non volatile data management like
saving, loading, checksum protection and verification, reliable
storage efc.

System Services

Service layer

System Services

The system services are a group of modules and functions which
can be used by modules of all layers.

Examples are real-time operating system, error manager and
library functions (like CRC, interpolation etc.).

Some of these services are uC dependent (like OS), ECU
hardware and/or application dependent (like ECU state
manager, DCM) or hardware and uC independent.

The task of this group of modules is to provide basic services for
application and Basic Software modules.

Service layer

Structure

Complex Drivers

A Complex Driver implements complex sensor evaluation and actuator
control with direct access to the uC using specific interrupts and/or
complex uC peripherals (like PCP, TPU

Task: Fulfill the special functional and timing require
complex sensors and actuators

Electric Valve Control
Injection Control

o
=
g
o]
8
=
ar
O
£
@
o
=
(=]
(&

Incremental Position Detection

Microcontroller Abstraction Layer

Microcontroller

Complex Drivers

The Complex Device Driver is a loosely coupled container,
where specific software implementations can be placed. The
only requirement to the software parts is that the interface to the
AUTOSAR world has to be implemented according to the
AUTOSAR port and interface specifications.

Complex Sensor and Actuator Control

The main task of the complex drivers is to implement complex
sensor evaluation and actuator control with direct access to the
UC using specific interrupts and/or complex pC peripherals (like
PCP, TPU), e.q.

— injection control

— electric valve control

— incremental position detection

Complex Drivers

Non-Standardized Drivers

Further on the Complex Device Drivers will be used to
iImplement drivers for hardware which is not supported by
AUTOSAR.

If for example a new communication system will be introduced in
general no AUTOSAR driver will be available controlling the
communication controller. To enable the communication via this
media, the driver will be implemented proprietarily inside the
Complex Device Drivers. In case of a communication request via
that media the communication services will call the Complex
Device Driver instead of the communication hardware
abstraction to communicate.

Another example where non-standard drivers are needed is to
support ASICs that implement a non-standardized functionality.

Complex Drivers

Migration Mechanism

Last but not least the Complex Device Drivers are to some
extend intended as a migration mechanism. Due to the fact that
direct hardware access is possible within the Complex Device
Drivers already existing applications can be defined as Complex
Device Drivers. If interfaces for extensions are defined according
to the AUTOSAR standards new extensions can be implemented
according to the AUTOSAR standards, which will not force the
OEM nor the supplier to reengineer all existing applications.

AUTOSAR Methodology

AUTOSAR requires a common technical approach for some
steps of system development. This approach is called the
“AUTOSAR Methodology”, which describes all major steps of the
development of a system, from the system-level configuration to
the generation of an ECU executable.

— The AUTOSAR Methodology is neither a complete
process description nor a business model and “roles” and
“responsibilities” are not defined.

— Furthermore, it does not prescribe a precise order in
which activities should be carried out. The methodology
is a mere work-product flow: it defines the dependencies
of activities on work-products.

AUTOSAR Methodology

Design steps go from the system-level configuration to the
generation of an ECU executable.

W

System Configure
Configuration System
System
System Extract
Configuration ECU-
Description Specific _—
System Information
ECU Configure
Extract ECU
System
Configuration ECL Generate o
System Configuration Executable Executable

Descripticn

AUTOSAR Methodology

Design steps go from the system-level configuration to the
generation of an ECU executable.

System
Configuration
Input :

=))

Configure
System

System

Firstly, the System Configuration Input mustto be
defined. The software components and the hardware are
selected, and the overall system constraints identified.
AUTOSAR provides a format for the formal description via
the information exchange format and the use of the following

templates.

— Software Components: each software component
requires a description of the software API e.g. data types,
ports, interfaces.

— ECU Resources: each ECU requires specifications
regarding e.g. the processor unit, memory, peripherals,
sensors and actuators.

— System Constraints: regarding the bus signals, topology
and mapping of belonging together software components.

AUTOSAR Methodology

Design steps go from the system-level configuration to the
generation of an ECU executable.

——— .
. Sy=El System
System Configure Configuration Configyration
Configuration System Input :System De;;;;;ul:n
Input :

System
/ Canﬁgure System \ -

Collection of System

Available SWC Communication-
Implementations i Matrix :

AUTOSAR
System
Configuration
Tool

CommunicationMatrix Type

System Configuration

The System Configuration Input includes or references various
constraints. These constraints can force or forbid certain
components to be mapped to certain ECUs or requires certain
Implementations to be used for components.

In addition, these constraints can contain resource estimations
describing the net availability of resources on ECUs and thereby
limiting the possible mappings.

The activity Configure System contains complex algorithms
and/or engineering work. There is a strong need for experience
in system architecture to map all the software components to the
ECUs. The tool AUTOSAR System Configuration Tool supports
the configuration.

An important output of the activity is the design of the System
Communication-Matrix. This System Communication-Matrix
completely describes the frames running on the networks
described in the topology and the contents and timing of those
frames.

AUTOSAR Software Process

Design steps go from the system-level configuration to the
generation of an ECU executable.

e

System Configure
Configuration System
Input :

System

o

System
Configuration
Description
System

The Configure System activity maps the software
components to the ECUs with resources and
timing requirements. The output of this activity is
the System Configuration Description
including system information (e.g. bus mapping,
topology) and the mapping of software
components to ECUs.

AUTOSAR Software Process

Further steps have to be performed

for each ECU in the system.

ECU Extract

B >

System Configure
Configuration System \ .
oo
System
System Extract
Configuration ECL-

Description Specific \ . —
System Information
ECU
Extract
of
System

Configuration

Extract ECU-Specific Information extracts the
information from the System Configuration
Description for a specific ECU. It becomes the

of System Configuration.

=))

Configure

"B B

System

This is a one to one copy of all elements

ECU Generate ECL
Configuration Executable Executable
Description
of the System

Configuration Description that are appointed to this specific ECU.

This step can be completely automated.

AUTOSAR Software Process

Further steps have to be performed for each ECU in the system.

Configure ECU mainly deals with the
configuration of the RTE and the
Basic Software modules. It adds all
implementation-related information,
including task scheduling, required
Basic Software modules,
configuration of the Basic Software,
assignment of runnable entities to
tasks, etc. The result of the activity is
included in the ECU Configuration
Description, which collects ECU-
specific information. The runnable
software to this specific ECU can be
built from this information.

=)

Configure
ECU

\E—

Configuration
Description

=D e

Generate ECU
Executable Executable

AUTOSAR Software Process

Further steps have to be performed for each ECU in the system.

The configuration is based on the
information extracted from the ECU
Extract of System Configuration,
Collection of Available SWC
Implementations, and BSW Module
Description.

The latter contains the Vendor
Specific ECU Configuration
Parameter Definition which defines

all possible configuration parameters %"D

and their structure. R \
The BSW Module Description is E __:”‘D ~ B
aSSU med tO COnSISt Of S|ng|e Cunfii?ation EG}tZI::Eurt?JIt?Ie Eerc%Jame

Description

descriptions delivered together with
the appropriate used BSW module.

AUTOSAR Software Process

Further steps have to be performed for each ECU in the system.

The detailed scheduling information
or the configuration data for e.g. the
communication module, the operating
system, or AUTOSAR services have
to be defined in this activity. Moreover
| at the latest here an implementation
is selected for each Atomic Software
Component.

=)
Configure
ECU

1 >—

ECU Generate ECU

Configuration Executable Executable
Description

In contrast to the extraction of ECU-specific information, the
configuration activity is a non-trivial design step, which requires complex
design algorithms and engineering knowledge.

AUTOSAR Software Process

Further steps have to be performed for each ECU in the system.

2 -0

Vendor BSW- AN
Specific Module
ECU Description
Configuration :
Parameter BswModuleDescription
Definition

ModuleDef

Av ailable _e== Description
swc i
Implementations ECU
Extract
of
System
Configuration
System

. Configure
Collection / i P,
of . T Configuration

[¥]
System
Configuration
System

>
\._

ECU
Configuration
Description

=D e

Generate ECU
Executable Executable

AUTOSAR Software Process

Further steps have to be performed for each ECU in the system.

In Build Executable (last step) an

the ECU Configuration Description.
. —) > | This step typically involves

system comawe N\ 9€NErating code (e.g. for the RTE and

Configuration System

out the Basic Software), compiling code

(compiling generated code or
compiling software components
available as source-code) and linking
everything together into an
executable.

executable is generated based on the
configuration of the ECU described in

}Dﬁl

Generate ECU
Executable Executable

AUTOSAR Software Process

Parallel to these steps are several steps performed for every
application software component (to be integrated later into the
system), e.g. generating the components API, and implementing
the components functionality.

omponent "‘E':\
Internal -
Bel’i&rior
Descliption

[post
||TID|EI'|1|EI'ItﬂtiDI'|]

.
.‘."
-
.
" \\._
InternalBehavior Tl .
. Component

mplementation

Component Desciiption
mplementation [for
Description Objlect-
[for Code] :
Souyce- Implemgntation
Code] : !

Impleméntation

R

Component Generate Component Implement Component Compile Compiled
Internal Comppnent API Component Implementation Component Component
Behavior A.PI
Description !
[API
Generation]
S AUTOSAR
InternalBehaw ior
Component Additional
API Headers

Generator

AUTOSAR Software Process

The initial work in this context starts with providing
the necessary parts of the software component

description.
That means at least the Component Internal
Behavior Description as part of the software \
component related templates has to be filled out. m
The internal behavior describes the scheduling moonent
relevant aspects of a component, i.e. the runnable [
entities and the events they respond to. :?E]H
Furthermore, the behavior specifies how a i
///_ component (or more precisely which runnable) S
E ——}Z responds to events like received data elements. m
“oteman -m| However, it does not describe the detailed mponent
Description | functional behavior of the component.

[API
Generation]

AUTOSAR
Component Additional
API Headers

InternalBehawior

Generator

AUTOSAR Software Process

Component
Internal
Behavior
Description
[API
Generation]

InternalBehawior

Afterwards Generate Component APl has to be
performed. This is a tool-based activity. The
AUTOSAR Component API Generator reads the
Component Internal Behavior Description of the
appropriate software component and generates
the Component APl accordingly. The Component
APl contains all header declarations for the RTE
communication. .

Soull[ce-

Implemgntation
Code] : !

1
Implemgntation I

Generate
Comppnent
API

D};ﬁ
AUTOSAR
Component

API
Generator

—i

Compiled
Component

v

Implement

Component
API \ Component

Component
Implementation

Compile
Component

Additional
Headers

AUTOSAR Software Process

Implement Component means the
functional development of the
component. With the Component Internal
Behavior Description and the Component
APl a software developer can implement
(i.e. developing, programming, testing)
the component vastly independent from
the other system design.

This implementation basically is outside
the scope of AUTOSAR.

Inteynal
Eel’i& ior
Descliption

[post
Implementation]
v

£
InternalBehaviol

Component\
mplementation

Description
[for
Souyce-
Code] :
Implemgntation

Component

Implementation
1

Behavior

Component Generate Component Implement

Internal Comppnent AP Component
API

Description !

7

[API
Generation]
: . AUTOSAR
InternalBehavior
Component Additional
API Headers

Generator

omponent - _

Compile
Component

Component
mplementation
Deschiption

[for
Object-
Code] :

Implemgntation
i

i

Compiled
Component

AUTOSAR Software Process

The results of the implementation will be
the Component Implementation (typically
the C-sources), a refined Component
Internal Behavior Description, containing
additional implementation specific
information, and a Component
Implementation Description, which
contains information about the further
build process (e.g. compiler settings,
optimizations, etc.).

Inteynal
Eel’i& ior
Descliption

[post
Implementation]
"

12
InternalBehaviol

Component\

mplementation
Description
[for
Souyce-
Code] :
Implementation

Component

Implementation
1

7

Component Generate Cnmpnnen\ Implement
Internal Comppgnent API Component
Behavior AIF'l
Description !
[API
Generation] Ell_“xrj_u__'
' . AUTOSAR
InternalBehavior Component Additional
API Headers

Generator

omponent -

Component
mplementation
Description
[for
Object-
Code] :
Implemgntation
i

i

Compiled
Component

Compile
Component

AUTOSAR Software Process

The following activities address the integration
of the previously provided component.

Compile Component uses the Component
Implementation Description for compiling the
Component Implementation together with the
Component API and the Additional Headers.
This yields the Compiled Component and
again a refined Component Implementation
Description. This contains additional new build
process information (mainly linker settings) and
the entry points.

omponent?,‘

Inteynal ~a
Eel’i&ior Tl
Descliption .

[post Sl
Implementation] o
v

£
InternalBehavior

-
\'1.

Component
mplementation
Component Description
mplementation [l‘ti:r
Descrliptiun Objiect-
[for Codle] :

Souyce-

Implemgntation
Code] : !

1
Implemgntation

1
1
]
Component Generate Component Component Compile Compiled
Internal Comppgnent API Implementation Component Component
Behavior AIF‘l
Description !
[API
Generation]
S AUTOSAR
InternalBehavior
Component Additional
API Headers

Generator

AUTOSAR

More on RTE, component integration and
runnables

AUTOSAR Components: interface with the RTE

We now deal with component aspects that:

1. support the proper configuration of the RTE and the
BSW: the software component description needs to
provide detailed information on how the underlying
software should behave with respect to the component
(for example: what runnables of the software-component
should be started when by the AUTOSAR OS),

2. describe the communication properties of a software-
component,

3. serve as a basis for the description of the detailed
resource requirements of software-components, and

4. provide a more detailed description of the timing
behavior of atomic softwarecomponents.

AUTOSAR Components: interface with the RTE

ComponentType
AtomicSoftwareComponentType

+component 1

InternalBehavior

ARElement
+hehavior

ARElement
Implementation

+hehavior

+runnable | 1..° +event | * +exclusvelrea |* +executionConstraint [*
Identifiable Identifiable Identifrable Runmiable ExcrationConstramt
Runnable Entity RTEEvent Exclusivefrea

+perinstancaMemory [*

idenfifrable

PerlnstanceMemory

AUTOSAR Components: Runnable entities

Runnable Entities (also Runnable) are defined in the VFB specs.

Runnable entities are the smallest code-fragments that are
provided by the component and are (at least indirectly) a subject
for scheduling by the operating system. An implementation of an
atomic software-component has to provide an entry-point to code
for each Runnable in its "InternalBehavior*.
— It is not possible for "CompositionType" to be referenced by
"InternalBehavior". Only atomic software-components may have
Runnables.

SW-Component 1

Runnable 1a

Runnable 1b

Runnable 1¢c

Runnable 1d

AUTOSAR Components: Runnable entities

In most cases Runnables will not be scheduled individually but as
parts of OS tasks.

SW-Component 1

Runnable 1a %~

/

Runnable/ﬁ) \
7

Runnable 1c

SW-Component 2

— Runnable 2a * SW-Component 3

1 Runnable 2b

— Runnable
;‘/ | —1 Runnable 3b

— Runnable 3a

—Renable 1d

, T~

/ /

\

Runnable 1a Runnable 2a Task 6

\

\Runnable 1é

Runnable 1

/ Y
¢ Tfé 1 Runnable 1c

Runnable 1d

Runnable'ba Runnable'bb / Task 3
Runnable 2c Runnable ;éa Task 4
Runnable 3b Task 5

Task 2

AUTOSAR Components: Runnable entities

ARElement
IntemalBehavior

+ supportsMulipleingtantiation: Boolean

+hehaviar

Hunnable |4

deniinable
RunnableEntity

sinterfunnanleVanable(0.*

+ canBelnvokedConcumently. Boolean
+ symbol: Sinng

DataProfotype

+iritienVariahle
! ot InterRunnableVariable
“=adVanzole
R # = communicationApproach: CommunicationApproachType
Wentifiabiz
Hunnahle +iataReadAcoes DelaReadACcess
_ Hentifiabia
+Hunnable +iataWniteAcoes DataliteAccess
Wentifiabie
“munnable +serverCallFoint ServerCallPoint
[-
+ fimeout Float

AUTOSAR Components: Runnable entities

ARElement
aatpType»
ComponentType
«atpTypens Atomic Software ComponentType
CompositionType
+component 1
Identifiabie ARElement
RunnableEntity +behaviore InternalBehavior
+ canBelnvokedCqncurrently: Boolean 1..* + supportsMultipleinstantiation: Boolean
+ symbol: String

AUTOSAR Components: Runnable entities

Class

RunnableEntity

Package

AUTOSAR Templates::SWComponentTemplate::InternalBehavior

Class Description

The runnable entities are the smallest code-fragments that are provided by the
component and are executed in the RTE. Runnables are for instance set up to
respond to data reception or operation invocation on a server.

Base Class(es) Identifiable

Artribute Datatype Mul.|Link Type |Attribute Descrip-
tion Class RunnableEntity

canBelnvokedConcurrently | Boolean 1 aggregation |Normally, this is symbol String aggregation | The symbol
FALSE. When this describing this
is TRUE, it is runnable's entry
allowed that this point. This is
runnable entity is considered the API
invoked of the runnable
concurrently (even anq is required
for one instance of during the RTE
the SW-C), which contract phase.
implies that it is usesExclusiveArea RunnableEntityCanEnterExclusiveArea aggregation | This means that
the responsibility the runnable can
of the enter/leave the
implementation of referenced
the runnable to exclusive area
take care of this through explicit
form of APl calls.
concurrency. waitPoint WaitPoint aggregation | The runnable has

dataReadAccess DataReadAccess * aggregation |Runnable has read wait point.

access to data
element

dataReceivePoint

DataReceivePoint

aggregation

Data receive
points of this

writtenVariable

InterRunnableVariable

reference

Inter-runnable
variables that are
written by
Runnable.

runnable.
dataSendPoint DataSendPoint * aggregation | The runnable has

data send point.
dataWriteAccess Data\WriteAccess * aggregation |Runnable has

write access to
data element

insideExclusiveArea

RunnableEntityRunsIinExclusiveArea

aggregation

The runnable
entity runs inside
the referenced
exclusive area

readVariable

InterRunnableVariable

reference

Inter-runnable
variables that are
read by this
Runnable.

serverCallPoint

ServerCallPoint

aggregation

The runnable has
server call point.

AUTOSAR Components: interface with the RTE

In case “canBelnvokedConcurrently” is FALSE.

During run-time, each Runnable of each instance of an atomic
software-component is (by being a member of an OS task) in one
of three states:

— Suspended: the initial state, the Runnable is passive, can be started

— Enabled: the Runnable should run (because for example a message
has been received on a port or a timing event occurs)

— Running: the Runnable is running within a running task.
The InternalBehavior describes for each Runnable, when a
transition from Suspended to Enabled occurs using the concept of
RTEEvent.

When a Runnable is "Enabled", the OS can decide to start running
it. The delay between entering "Enabled" and moving into
"Running" depends on the OS scheduling.

The transition from "Running" into "Suspended" depends on the
Runnable: it occurs when the Runnable returns or terminates

AUTOSAR Components: interface with the RTE

In case the internal behavior defines a runnable as one that
cannot be invoked concurrently, it is the responsibility of the RTE
and the BSW to make sure that the runnable is never started
concurrently. This implies that the implementation of the SW-
Component does not need to worry about concurrency issues.

For example:

— The internal behavior of a component-type MyComponentType
describes a Runnable R1, enabled when an operation on a
clientserver p-port is invoked. The component specifies that the
Runnable R1 cannot be invoked concurrently.

— The component MyComponentType is instantiated on an ECU.

— When a call of the operation is received, the corresponding
instance of the Runnable R1 is enabled and the OS will start
executing the Runnable in a task.

— If another call of the operation is received while the Runnable is
"running”, the OS must not run the Runnable again in a second
task. Rather, the OS has to wait (and maybe queue the second
incoming request) until the Runnable returns into "Suspended".

AUTOSAR Components: interface with the RTE

If “canBelnvokedConcurrently” is TRUE, the same runnable can
run several times concurrently in different tasks. This implies that
there is no single state associated to the runnable.

Note that the SW-Component description itself does not put any
bounds on the number of concurrent invocations of the runnable
that are allowed.

Allowing concurrent invocation of a runnable implies that the
iImplementation of the SW-component needs to take care of this
additional form of concurrency.

For example:

— The internal behavior of MyComponentType describes a Runnable R1,
which should be enabled when an operation on a clientserver p-port of
the component is invoked. The Runnable R1 can be invoked
concurrently.

— The component MyComponentType is instantiated on an ECU.

— When a call of the operation is received, the corresponding instance of
the Runnable R1 is enabled and the OS will start executing the
Runnable in a task. If another call of the operation is received, it is
allowed that the same runnable is started again in a different task.

AUTOSAR Components: interface with the RTE

A typical use-case of concurrent runnables are the AUTOSAR
services. The AUTOSAR services will typically take care of
concurrency internally: several software components can directly
use the services in parallel. The ECU-integrator could then decide
that the runnable implementing the AUTOSAR service runs
directly in the context (in the task) of the software-component
iInvoking the service. This is a very efficient, direct coupling
between the client and the server: the connector between the
client and the server is reduced to a local function-call.

AUTOSAR Components: interface with the RTE

supportsMulti-
plelnstantiation

canBelnvoked-
Concurrently

Implication for an implementation of a run-
nable

FALSE

FALSE

This implies that the implementation of the
runnable will never be invoked concurrently
from several tasks. The implementation does
not need care about reentrancy issues'® and
can typically use “static variables” to store
state.

TRUE

FALSE

In case there are several instances of the
same component on the local ECU, the im-
plementation of the runnable can still be in-
voked concurrently from several tasks. How-
ever, there will be not concurrent invocations
of the implementation with the same “instance
handle”. To ensure that this is safe, the im-
plementation will typically use per-instance
memory.

FALSE/TRUE

TRUE

In this case the runnable can be invoked con-
currently from several tasks, even with the
same instance handle.

AUTOSAR Components: interface with the RTE

Preemption

The basic execution model of the Runnables shown above does
not fundamentally preclude the OS from preempting the execution
of a Runnable to execute another runnable.

The "InternalBehavior" might however put additional constraints
on the behavior of the OS, so that certain Runnables might never
be preempted (for example to assure certain timing requirements
when the Runnable needs to finish quickly after being enabled or
for example to ensure that logical sequencing constraints are
respected).

Reentrancy and “library functions”

Note that all code that is called by different Runnables (like e.g.
library routines, etc.) must obviously be reentrant. A filter
algorithm implemented in C, for example, is not allowed to store
values from previous runs by means of static variables or
variables with external binding.

AUTOSAR Components: RTE events

During execution, several run-time events will occur, such as the
reception of a remote operation-invocation on a P-Port or a
timeout on an R-Port that is not receiving the data-elements it
expects. Describing an RTEEvent in the software-component
template includes two aspects:
1. Defining an event
2. Defining how the RTE should deal with the event when it
occurs
As described in the virtual functional bus specification, the
implementation of a software-component can interact with the
occurrence of such events in two ways:
— The RTE can be instructed to enable a specific runnable when
the event occurs

— The RTE can provide "wait-points”, that allow a runnable to
block until an event in a set of events occurs

AUTOSAR Components: RTE events

The description of the internal behavior includes a description of
all events that the internal behavior of the atomic software-
component relies on. This "RTEEvent” shows up as an "abstract"

base-class in the meta-model: the exact attributes of the
"RTEEvent" depend on the exact event that is described

identifiable
RTEEvent
AsynchronousServerCallReturnsEvent DataSendCompletedEvent DataR dEvent DataReceiveErrorEven Operationlnv okedEv ent TimingEvent ModeSwitchEvent
+ penod: Float||+ activation: ModeActivationKind
+event 1 +event | 0.1 +event | * +event | 0.1 +event | 1 0.
winstanceRefa ainstanceRefas ainstanceRef sinstanceRefs
+eventSource \|/1 +eventSource \| /1 +data\|/1 +data |/ 1 peration¢1 +mode \|/1
ServerCallPoint identifiable DataPrototype Identifiable Identifiable
Asynchronous ServerCallPoint DataSendPoint DataElementPrototype OperationPrototype ModeDeclaration

AUTOSAR Components: Response to events

In case the OS needs to start a Runnable when the corresponding
event occurs, the "RTEEvent" can directly reference the Runnable
that needs to be started. When the software-component
description uses this feature, it is the responsibility of the OS to
start the Runnable when the event occurs.

In case the Runnable wants to block and wait for events (which
makes the runnable into a cat. 2 runnable), the description of the
runnable may include the definition of a "wait-point". Such a
"WaitPoint" contains a reference to all events that are waited for.
The wait-point will block until one of the referenced events occurs.

A single "RunnableEntity" can actually wait only at a single
"WaitPoint" for being scheduled. On the other hand, it is in general
possible that a single event can be used to trigger "WaitPoints" in
different "RunnableEntities"

AUTOSAR Components: RTE events

ARElement
InternalBehavior
+ supporsMultipleinstantiation: Boolean
+behavior
+unnable1.* +event|”
identifiable ldentifiable
RunnableEntity :gaﬂDnEvent RTEEvent
Tt
+ canBelnvokedCorjcumently: Boolean 0.1
+ symbol: Sting
’ —trigger!’a\ 1.
+runnable
+waitPoint|®
identifiable
WaitPoint
+ timeout: Float|”

AUTOSAR Components: Communication attributes

The highest level of description of information exchanged
between components in an AUTOSAR system is the
“Portinterfaces”, as shown in earlier sections.

Such an interface however, only describes structure and does not
include information about whether communication needs to be
done reliably, or whether an init value exists in case the real data
IS not yet available.

This kind of information is known only within the particular
scenario the interface is used and also frequently differs
depending on whether an interface is required or provided.
Therefore, most communication relevant attributes are related to
the ports of a component.

The communication attributes are organized in “communication
specification” (short: ComSpec) classes. The model distinguishes
three basic classes depending on the role (R-, P-Port or
connector) as detailed below.

AUTOSAR Components: Communication attributes

Model of the communication attributes for an R-Port.

entiable
satpPrototypes
componentPrototype
—c:-mﬂpecI:..‘
DataPrototype RPorComSpec identifizble
DataElementPrototype OparatlonPrototype
+ IsQueusd: Boolean
sdataElement /N 1 [“_\, soperation /\ 1
slnstanceRefs sInBancsRats
RecelverComspsc CllentComSpac
1
LaraFmtotype — DataRecelvercomspec EventRecelvercomspec
ValueSpeciflcamon | HINITValus
——rm + allveTimeout: Ficat | [+ queueLength: Int
sinEancefafs + rmesncTime: Float

DamaFlirer

AUTOSAR Components: Communication attributes

The ComSpec attributes are collected depending on the kind of
data transmitted, which means they may differ depending on
whether data elements are exchanged (sender-receiver),
operations are called (client-server), or even depend on whether
the data-elements represent data or events.

This is expressed in the inheritance tree of ComSpec classes.
Each of these classes may then carry the specific attributes.

An R-Port may aggregate many ComSpec classes, possibly one
for each interface element (data element or operation) the
associated interface contains. The meaning of the attributes
shown above is explained in the following class tables.

AUTOSAR Components: RPort attributes

Communication attributes specific to receiving data.

Attribute Datatype Mul. | Link Type |Attribute Description

aliveTimeout |Float 1 aggregation | Specify the amount of time (in seconds) after
which the software component (via the RTE)
needs to be notified if the corresponding data
item have not been received according to the
specified timing description.

filter DataFilter 0..1 |aggregation

initValue ValueSpecification |1 reference |Initial value to be used in case the sending

to instance |component is not yet initialized. If the sender

also specifies an init value the receiver's value
will be used.

resyncTime Float 1 aggregation | Time allowed for resynchronization of data

values after current data is lost, e.g. after an
ECU reset.

Communication attributes specific to receiving events.

Attribute

Datatype

Mul.

Link Type |Attribute Description

gueuelLength

Int

aggregation |Length of queue for received events.

AUTOSAR Components: RPort attributes

Client-specific communication attributes.

operation

OperationPrototype

reference
to
instance

Operation these attributes belong to.

Acknowledgement request attribute
Success/failure is reported via a SendPoint of a Runnable.

Attribute Datatype Mul. |Link Type |Attribute Description
timeout Float 1 aggregation | Number of seconds before an error is reported or
in case of allowed redundancy, the value is sent
again.
type Enumeration{| 1 aggregation | Part of communication the acknowledgement is
transmission, requested for. "transmission" refers reaching the
reception } receiving port, where "reception” refers to the

value being actually passed to the reciving
component code.

AUTOSAR Components: Pport attributes

DataFPrototype

DataElementPrototype

+

isQueusd: Boolean

+dataElement J'II

h 4

enfifiable

watpPrototypes
ComponentPrototype

+ocomSpec| 0.

FFPaortComSpec

Acknow ledgementRequest

+
+

winstanceRefs

+acknowledgement

Idenfifiable

OperationPrototype

+operation a"l

SenderComSpec

ServerComSpec

timeout: Float

type: Enumeration{ transmission, reception }| 0--2

DataFPrototype

ValueSpecification

+initWalue
e

+ queuelength: Int

DataSenderComSpec

EventSenderComSpec

winstanceRefs

+

caninvalidate: Boolean

ainstanceRefs

AUTOSAR Components: PPort attributes

Attributes specific to distribution of data

Attribute Datatype Mul.| Link Type |Attribute Description
canlnvalidate |Boolean 1 aggregation | Flag whether the component can actively
invalidate data.
initValue ValueSpecification | 1 reference |Init value to be sent if sender component is not
to instance |yet fully initialized, but receiver needs data

already.

Communication attributes for a server port

Attribute Datatype Mul.|Link Type |Attribute Description

operation OperationPrototype | 1 reference |Operation these communication attributes
to instance |apply to.

gueuelLength |Int 1 aggregation | Length of call queue on the server side. The

gueue is implemented by the RTE.

AUTOSAR Components: Connector attributes

DataProteiype
DataElementPrototype

isdueued: Boolean

+dataClement 1

ainsanceRefs

ConnectorProtolyps
AssemblyConnectorPrototype

+comSpec|0..*

ConnectorGComSpec

dentifiable
OperationPrototype

+operation J",\ 1

ainstanceRefs

SenderReceiverConnectorComSpec

ClientServerConnectorComSpec

+
+

maxditter Float
maxTrangferTime: Float

AUTOSAR Components: Connector attributes

Communication attributes for connectors between sender and receiver
ports

Attribute Datatype Mul. |Link Type |Attribute Description

dataElement DataElementPrototype | 1 reference |Data element these attributes apply to.
to instance

maxdJitter Float 1 aggregation | Maximum allowed jitter as a measure for

variance of transport time.

maxTransferTime | Float 1 aggregation | Maximum allowed time for
transportation of data from sender to
receiver in seconds.

Communication attributes for connectors between client and server ports

Attribute Datatype Mul.| Link Type | Attribute Description

operation OperationPrototype | 1 reference |Operation these attributes apply to.
to
instance

Runnables and communication

This section describes the sender-receiver communication
relevant attributes of a component, which influence the
behavior and API of the AUTOSAR RTE. Furthermore, the
possible interaction patterns for application of the sender-
receiver paradigm are explained, namely:

1. Data-access in a cat. 1 Runnable,
2. explicit sending,

3. the DataSendCompletedEvent: dealing with the
success/failure of an explicit send, and

4. the DataReceivedEvent: responding to the reception
of data

Runnables and communication

ComponentType
AtomicSoftwareComponentType

+{:omponen1f 1

InternalBehavior

ARElement

+ supportsiMultiplelnstantiation: Boolean

¢

+behavior

+unnable | 1..*

+dataElement

e

1

ginstanceRefs

0.~

DataProfotype
DataElementPrototype +dataElement

1

identifiable
DataReadAccess

+dataReadAccess | ©

+munnable

L

ainganceRef»

0.~

identifiable
DataWrite Access

+dataWriteAccess | *

+runnable

’

RunnableEntity

Identiffabie

+ symbol: String

+ canBelnvokedConcurrently: Boolean

Runnables and communication

The "InternalBehavior" can specify that a Runnable needs read-
access or write-access to the data-elements of an RPort or
PPorts.

The presences of a DataReadAccess means that the runnable
needs access to the DataElement in the rPort. The runnable will
not modify the contents but only read the data and expects that
the contents do NOT change.

The presences of a DataWriteAccess means that the runnable
potentially modifies the dataElement in the pPort. The runnable
must ensure that the data-element is in a consistent state when it
returns. When using DataWriteAccess the new values of the
data-element is only made available when the runnable returns
(exits the "Running” state).

Attribute Datatype Mul. | Link Type | Attribute Description

dataElement |DataElementPrototype |1 reference |The data element that is going to be read by
to this runnable.
instance

Runnables and communication

Explicit send and receive

ConmponentType DataProtatype
AtomicSoftwareComponentType DataElementPrototype
+ 1sQueued: Boolean
+wmponent} 1 +dataElement .""l\ 1
zinganceRefs
* I:I”?
ARElement deniifiable

InternalBehav ior DataSendPoint +eventSource +event
-
+ supporsMultipleinstantiation: Boolean 1 0.1
+dataSendPoint | *
+hehavior
+runnahle
+munnable|1..*
dentifiable

RunnableEntity

+ canBelnvokedConcumently. Boolean
+ symbol: String

RTEEvent
DataSendCompletedEv ent

Runnables and communication

The Runnable entity can also have "DataSendPoints" which
reference an instance of a data element in the component’s p-
ports. The presence of a "DataSendPoint“ means that this
Runnable can explicitly "send" (an arbitrary number of times) new
values of the specified data-elements of the p-port (as opposed to
the “DataWriteAccess”)

— In analogy to explicitly sending data it is also possible to
define explicit polling for new available data through a
“DataReceivePoint”.

It would in general be possible to combine a "DataReceivePoint”
with a "WaitPoint" in the scope of a particular "RunnableEntity".
This would allow for a call to a blocking receive routine
implemented by the RTE. The "timeout" attribute of meta-class
"WaitPoint" can be used to specify the time until the blocking call
expires.

Runnables and client-server communication

Invoking an operation

A "RunnableEntity" invokes an operation via an "RPortPrototype"
of the enclosing "ComponentPrototype" typed by a particular
"AtomicSoftwareComponentType". Note that the operation itself
can be invoked either "synchronously" or "asynchronously".

In the majority of cases the operation will be invoked at a different
"ComponentPrototype“ but in general it would be possible to invoke
an operation on the same® ComponentPrototype" as well.

The decision whether a specific operation is called synchronously
or asynchronously needs to be specified in the formal description
of the corresponding "AtomicSoftwareComponentType", namely in
the context of an "InternalBehavior".

Runnables and client-server communication

Invoking an operation

In case of a synchronous operation invocation the particular
"RunnableEntity" merely needs a "SynchronousServerCallPoint".
The other case is a bit more complex because it is necessary to
specify how to respond to a notification about the completion of the
corresponding operation.

This is done using the generic “RTEEvent” mechanism: the
notification about an asynchronously executed operation being
complete is implemented as an
"AsynchronousServerCallReturnsEvent".

Therefore, if an AsynchronousServerCallReturnsEvent is raised
the RTE can either trigger the execution of a specific
"RunnableEntity" or the "AtomicSoftwareComponentType® can
implement a "WaitPoint" that blocks the execution of the calling
runnable until the "AsynchronousServerCallReturnsEvent" is
recognized.

Runnables and communication

For example, let's consider the case of an asynchronous call to a remote
operation where the RTE is supposed to trigger a specific "RunnableEntity" when
the operation completes. The description of the corresponding
AtomicSoftwareComponentType would typically contain the following elements:

1.

The “AtomicSoftwareComponentType” contains an "RPortPrototype" 'myPort
typed by a "Portinterface" that in turn contains the definition of an "Operation-
Prototype" 'remoteQperation'.

The "AtomicSoftwareComponentType's" "InternalBehavior" contains at least two
"RunnableEntities": the "RunnableEntity" 'main’ is supposed to invoke the
operation; the "RunnableEntity" 'callback’ is the one that should be called when
the operation completes.

The description of the "RunnableEntity" 'main’ contains an
“AsynchronousServerCallPoint” 'invokeMyQOperation' referencing the respective
"OperationPrototype" in the "Portinterface" used to type the "PortPrototype"
'myPort. This implies that the "RunnableEntity" is allowed to invoke this operation
asynchronously.

The description of the "AtomicSoftwareComponentType" includes an
“AsynchronousServerCallReturnsEvent” 'myQOperationReturns' which references
the previously defined "AsynchronousServerCallPoint" 'invokeMyQOperation' out of
"RunnableEntity" 'main'.

The description of the “AsynchronousServerCallReturnsEvent” 'myOperation-
Returns' references the "RunnableEntity" 'callback’, indicating that the RTE should
trigger the execution of this Runnable when 'myOperationReturns' is raised.

Runnables and communication

Providing an implementation of an operation

A software-component can define an “OperationinvokedEvent” for
each operation inside one of the server P-Ports. This way a
Runnable may respond to such an invocation through the generic
event handling mechanisms described above.

Activation of Runnables: time-driven activation

In many cases, Runnables do not need to be started by the
AUTOSAR OS in response to events related to communication
(e.g. the reception of a response to an asynchronous operation
invocation) but to timing events. Many Runnables will need to run
cyclically with a fixed rate.

The approach taken in the software-component description is to
define so-called "TimingEvents" as special kinds of RTEEvents. So
far, only one kind of timing event has been defined: a simple
"TimingEvent", which has a period as attribute. When the internal
behavior of an atomic software-component requires that the
AUTOSAR OS executes certain Runnables periodically, the
description will define a "TimingEvent" with the desired period.

This "TimingEvent" then contains a reference to the Runnable that
needs to be executed with this period.

Runnables and communication

identifiable
RTEEvent

+startOnEvent

A

TimingEv ent

+ penod: Float

0..1

identifiable

RunnableEntity

+

+ symbol: String

canBelnvoked

Co
!

Runnable execution constraints

Execution order of Runnables of different software-components is
affected by dataflow dependencies between the ports of the
connected components.

The execution order of Runnables according to data-flow
dependencies can (in OSEK/CAN based systems) only be
guaranteed if all affected Runnables are scheduled in one task.

In time-triggered systems (OSEKTime / FlexRay) the execution
order can be guaranteed.

In addition to control-engineering driven data-flow dependencies
there are additional criteria to define the execution-order of
Runnables: for example some initialization Runnables must have
finished executing before other runnables are allowed to start.

These dependencies can be described by
“RunnableExecutionConstraints” which are aggregated to the
“InternalBehavior”.

Runnables and communication

ARElement

InternalBehawvior::
InternalBehav ior

+ supportshMultiplelnstantiation: |Boolean

)

+behavior

+runnakle 1%

Hentifiable
InternalBehav icr::Runnable Entity

+executionCongraint

RunnableExecutionConstraint

<>

+obzernvedRunnable
e

+behavior

Bahavior

&

winganceRefs

1
+

canBelnvokedConcumently. Boolean
gymbol: String

1 ginganceRefs

+observable
+obsarvable |* é:{GFdEFEd}
Identifiable
Observable

+

stateChange: Enumeration{start gop}

1

AllowedBehav ior

MotAllow edBehavior

Runnables and communication

Example
The internal behavior of an atomic software-component describes

three Runnables (“init”, “calculate1” and “calculate2”) and the
following execution order constraints are given:

1.Runnable “Init” has to terminate before the Runnable “calculatel”
IS allowed to start.

1. Additionally it is not allowed that the “calculate2” starts
before “calculate1” has terminated.

This can be specified by the following
“RunnableExecutionConstraints”:

1. Observables: calculatei.start, init.start, init.end
AllowedBehavior: init.start -> init.end -> calculate.start

2. Observables:
calculate2.start, calculate1.start, calculate1.end
NotAllowedBehavior: calculatel.start -> calculate2.start

Runnables interaction within a component

RunnableEntities within a specific AtomicSoftwareComponentType
typically need to communicate among each other. This implies that
the RTE and/or the AUTOSAR OS need to provide synchronization
mechanisms to the "RunnableEntities" such that safe (in the multi-
threading sense) exchange of data is possible.
Several concepts for implementing communication among
RunnableEntities can be identified.
There are various techniques to provide efficient interaction
between "RunnableEntities” within one
"AtomicSoftwareComponentType".
Two possible approaches for formal specification of this kind of
communication are:
— Specifying that several "RunnableEntities" belong in a
specific "ExclusiveArea"
— Specifying the data exchanged between the
"RunnableEntities”

Runnables interaction within a component

Communication among "RunnableEntities" can be implemented by
means of "shared memory".

— RunnableEntities" within an
"AtomicSoftwareComponentType“ are allocated to the
same CPU.

Communication among RunnableEntities can then establish a data
flow scheme (a very popular pattern in the application of control
theory to automotive embedded systems). If global variables are
used for establishing inter-RunnableEntity communication they
acquire the semantics of so-called state-messages.

Nevertheless, directly sharing memory between RunnableEntities
requires a serious problem to be solved: the guarantee of data
consistency among communicating "RunnableEntities".

Runnables and communication

Note that this approach closely resembles the communication
principle underlying "DataReadAccess" and "DataWriteAccess".

The counterpart to "DataReadAccess" and "DataWriteAccess"
within the AUTOSAR meta-model is "DataReceivePoint" and
"DataSendPoint". These allow for an immediate access to the
underlying communication item. It should be possible to specify the
same semantics even for communication among
"RunnableEntities” of the same "AtomicSoftwareComponentType".

The following paragraphs describe some common strategies that
can be used to ensure the required data-consistency. We do not
attempt to describe the pros or cons of these approaches.

Runnables and communication

Scheduling strategy

A first strategy for guaranteeing data consistency of concurrently
accessed variables is based on a defined scheduling strategy:

Execute a "RunnableEntity” such that it can never be
preempted by another "RunnableEntity” that might modify the
memory being read by the first one.

As nearly all embedded AUTOSAR OS only allow for a single
iInstance of each task running at the same time, this can be
achieved by putting all "RunnableEntities" that interact by sharing
memory into a single task.

The task must be instrumented (i.e. the execution of each
"RunnableEntity" must be guarded by a flag or something similar)
such that it is possible to suppress the execution of particular
"RunnableEntities".

Runnables and communication

Event A Event B

Runnable Entity A Runnable Entity B

Runnables and communication

As a possible execution model, an (OSEK) event shall be associated with
each "RunnableEntity" of a (OSEK ECC) task. Then it is easy to guard the
execution of the "RunnableEntity" depending on the corresponding event.

In other words: the task is in wait state until one of the possible events
occur in which case the task is ready for transition into state running. As a
conseqguence of this transition, the "RunnableEntity” corresponding to the
event is executed. This prlnc:lple works even in case several events occur
simultaneously.

"RunnableEntities" of a single task can obviously not be executed
concurrently. A "RunnableEntity" can only be executed if other
"RunnableEntities" of the same task have finished their execution. This
could lead to a certain non-deterministic delay between the recognition of
an event and the execution of the corresponding "RunnableEntity". It must
be decided whether this delay can actually be tolerated by a particular
application.

As suggested before, this concept requires the usage of a more advanced
scheduling policy. In particular, the capabilities of OSEK ECC tasks (or
similar, if a non-OSEK OS is used) are a prerequisite for the
implementation of this concepit.

Runnables and communication

Mutual exclusion with semaphores

Multi-threaded operating systems provide mutexes (mutual
exclusion semaphores) that protect access to an exclusive
resource that is used from within several tasks.

The RTE could use these OS-provided mutexes to make sure that
the "RunnableEntites” sharing a memory-space would never run
concurrently. The RTE would make sure the task running the
"RunnableEntity" has taken an appropriate mutex before accessing
the memory shared between the "RunnableEntities”.

Runnables and communication

Interrupt disabling

Another alternative would be the disabling of interrupts during the
run-time of "RunnableEntities” or at least for a period in time
identical to the interval from the first to the last usage of a
concurrently accessed variable in a "RunnableEntity". This
approach could lead to seriously non-deterministic execution
timing.

Runnables and communication

Priority ceiling

Priority ceiling allows for a non-blocking protection of shared
resources. Provided that the priority scheme is static, the
AUTOSAR OS is capable of temporarily raising the priority of a
task that attempts to access a shared resource to the highest
priority of all tasks that would ever attempt to access the resource.

By this means is technically impossible that a task in temporary
possession of a resource is ever preempted by a task that attempts
to access the resource as well.

Runnables and communication

Implicit communication by means of variable copies

Another alternative is the usage of copies of concurrently accessed
variables with state message semantics.

This means in particular that for a concurrently used variable a
copy is created on which a "RunnableEntity" entity can work
without any danger of data inconsistency.

This concept requires additional code to write the value of the
concurrently accessed variable to the copy before the
"RunnableEntity" that accesses the variable is executed.

The value of the copy must be written back to the concurrently
accessed variable after the "RunnableEntity" has been terminated.
Since it would be too expensive and errorprone to manually care

about the copy routines it would be a good idea to leave the
creation of the additional code to a suitable code generator.

Runnables and communication

It is possible to further optimize the process by reducing the
additional code at the beginning and end of each task, for example,
copy routines will only be inserted where appropriate, e.g. a copy
routine for writing the value of a copy back to the concurrently
accessed variable will only be inserted if the "RunnableEntity" has
write access to the variable.

The copy routines have to make sure that the copy process is not
interrupted in order to be capable of consistently copying the values
from and to the shared variable. These periods, however, are
supposed to be very short compared with the overall run-time of the
"RunnableEntity".

Code Generator }

Runnable Entity Copy from

> Copy to Runnable Entity {f:;gﬁf Copy to

Runnables and communication

Further Oﬁtimization criteria can be applied, for example: it would be perfectly safe
to avoid the creation of copies for runnables that are scheduled in the task with
the highest priority of all tasks that (via contained runnables) access a certain
concurrently accessed variable.

In order to keep the application code free of any dependencies from the code
generation, access to concurrently accessed variables will be guarded by macros
that are later resolved by the code generator.

The presence of the guard macros directly supports the reuse on the level of
source code. The reuse on the level of object code is only possible if the
scheduling scenario (in terms of the assignment of "RunnableEntities" to priority
levels) does not change. This concept can only be implemented properly with the
aid of a code generator if the variables in question can be identified. In other
words: the description of a software component has to expose all concurrently
accessed variables to the outside world.

[Code Generatg@r

> Copy to Runnable Entity

Runnable Entity Copy from

Runnables and communication

Description possibility 1: "ExclusiveArea“ (critical section)

This section describes how the concept of "ExclusiveAreas" can be
used in the description of the "InternalBehavior" of an
"AtomicSoftwareComponentType". These "ExclusiveAreas" do not
iImply a specific implementation (e.g. with mutual-exclusion
semaphores).

They just specify a constraint on the scheduling policy and
configuration of the RTE: If two or more “RunnableEntities” refer to
the same “ExclusiveArea” only one of these "RunnableEntities" is
allowed to be executed while being inside that “ExclusiveArea”. In
other words: these "RunnableEntities" must not run concurrently
(pre-empt each other) while executing inside the “ExclusiveArea”.

An attribute "executionOptimization" can provide hints for ECU
configuration. The possible values are "executionTime" and
"codeSize". The first hints to care for an efficient implementation in
terms of execution time while the latter suggests focusing on code
size.

Runnables and communication

There are in general two ways to use the "ExclusiveAreas".

In the first approach, the formal description specifies that certain
"RunnableEntities” always run inside an exclusive area.

For example, if the formal description specifies that both
"RunnableEntity" 'r1" and "RunnableEntity" 'r2' run within
"ExclusiveArea“ 's1', the RTE in collaboration with the scheduler
must make sure that "RunnableEntities" 'r1" and 'r2' never run
concurrently; the scheduler should never preempt 'r1' to run 'r2'.

This requirement could be implemented by several of the
Implementation strategies described above.

In the second approach, the runnable would explicitly make API-
calls to the RTE within the implementation of the "RunnableEntity
to enter and leave a specific "ExclusiveArea”.

This could, for example, be implemented by means of priority
ceiling

"

Resource consumption

AUTOSAR SW-Components need to be mapped on ECUs at some
point during the development. The mapping freedom is limited by
the System Constraints and the available resources on each ECU.

The SW-Component description provides information about the
needed resources concerning memory and execution time for each
AtomicSoftwareComponentType. The hardware resources are
going to be used by all software on that ECU, including OS, Basic
SW, RTE, ECU abstraction, CCD, Services.

The resource consumption of the other software on an ECU (OS,
RTE, Basic SW,...) is not covered by the AUTOSAR SW-
Component template explicitly although the template might be
used to capture the memory and execution time consumption of a
specific configuration of the Basic SW.

— Some of these resources are highly dependent on the configuration
actually mapped on the ECU. So an iterative resource description and
estimation is needed to cover the RTE and Basic SW resource needs.

Resource consumption

Resources can be divided into static and dynamic resources. Static
resources can only be allocated by one entity and stay with this
entity. If the required amount of resources is bigger than the
available resources the mapping does not fit physically. ROM is an
example of a spare resource where obviously only the amount of
data can be stored that is provided by the storage capacity.

Dynamic resources are shared and therefore can be allocated
dynamically to different control threads over time. Processing time
Is an example, where different "RunnableEntities" are given the
processor for some time.

If some runnable entity uses more processing time than originally
planned, it can lead to functional failure. Also some sections of
RAM can be seen as dynamic resources (e.g. stack, heap which
grow and shrink dynamically).

Resource consumption

The resource consumption is attached to an Implementation of an
AtomicSoftwareComponentType. For each Implementation, there
can be one ResourceConsumption description.

ARElement ARElement
InternalBehavior +hehavior Implementation
-
1
+behavior ’
+perinstanceMemory | * +runnable | 1..*
identifiable identifiable
PerlnstanceMemaory RunnableEntity
+perinsanceMemory 1 +mnnaljlef\1 +runnable \1
+resourceConsumption |1

identifiable

Resource Consumption

+gtacklzage ’ ’
StackUsage
+objectFileSection [1..* +heapllsage (0.*

o_*

+gxecutionTime |0..* identifiable
Heaplisage

Identifiable ObjectFileSection

ExecutionTime

+perinstanceMemorySize |~

PerinstanceMemorySize

Resource consumption

All resources are described within the ResourceConsumption
meta-class.

ExecutionTime and StackUsage are used to provide information on
the implementation-specific resource usage of the runnables
defined in the “InternalBehavior”.

“PerlnstanceMemorySize” provides information regarding the
actual size (in bytes) of the “PerinstanceMemory” defined in the
“InternalBehavior”.

“ObjectFileSection” documents the resources needed to load the
object-file containing the implementation on the ECU.

“HeapUsage” describes the dynamic memory usage of the
component.

Resource consumption

Relation to the hardware description

In this section the relationships between the description methods of
the ECU Resource template and the SW-Component resource
needs are discussed. Only the memory description and the
processing time description are covered.

Memory

The ECU resource template describes the total available memory
due to the hardware characteristics, not the actual implementation
technology. Therefore memory implementation names like
EEPROM, FLASH or DRAM are not used in the description of an
ECU.

The main criteria distinguishing memory is the volatile - non volatile
category. First the attributes for volatile memory are discussed,
then the additional attributes for non volatile memory will be
iIntroduced.

Resource consumption

Execution time

The description mechanism is defined how actual execution times
for specific hardware can be provided.

The ECU Resource template description document introduces a
different description mechanism which is based on some
benchmarking technology.

The execution time is an ASSERTION: a statement about the
duration of the execution of a piece of code in a given situation.
The execution time is NOT A REQUIREMENT on the software-
component, on the hardware or on the scheduling policy.

Resource consumption

A description of the execution time of a runnable entity of an
implementation of an atomic software-component should include:
— the nominal execution time (“0.000137 s”) or a range of times

— a description of the entire context in which the execution-time
measurement or analysis has been made

— some indication of the quality of this measurement or estimation

The goal thereby is that the template finds a good compromise
between flexibility and precision.

The description must be flexible enough so that the entire range
between analytic results (“worst-case execution time”) and rough
estimates can be described.

The description should be precise enough so that it is entirely clear
what the relevance or meaning of the stated execution time is. This
implies that a large amount of context information needs to be
provided.

Resource consumption

The execution time can be described for a specific sequence of
assembly instructions. It does not make sense to describe the
execution time of a runnable provided as source-code.

In addition, the execution-time of such a sequence of assembly
Instructions depends on:

— the hardware-platform
— the hardware state
— the logical (software) context

— execution-time of external pieces of code called from the
runnable

These dependencies are discussed in detail in the following.

Resource consumption

Dependency of the execution time on hardware

The execution-time depends both on the CPU-hardware and on
certain parts of the peripheral hardware:

— The execution time depends on a complete description of
the processor, including:

— kind of processor (e.g. ,PPC603%)
— the internal Processor frequency (,100 MHz")
— amount of processor cache
— configuration of CPU (e.g. power-mode)
Aspects of the periphery that need to be described include:
— external bus-speed

Resource consumption

MMU (memory management unit)

— configuration of the MMU (data-cache, code-cache, write-
back,...)

— external cache
— memory (kind of RAM, RAM speed)

In addition, when other devices (I/O) are directly accessed ,as
memory*, the speed of those devices has a potentially large
influence.

On top of this, the ECU might provide several ways to store the
code and data that needs to be executed. This might also have a
large influence on the execution time.

For example:

— execution of assembly instructions stored in RAM vs.
execution out of ROM may have different execution times

— when caching is present, the relative physical location of
data accessed in memory influences the execution time

Resource consumption

Dependency on hardware state
In addition to the static configuration of the hardware and location
of the code and data on this hardware, the dynamically changing
state of the hardware might have a large influence on the
execution time of a piece of code : some examples of this
hardware state are:
— which parts of the code are available in the execution-
cache and what parts will need to be read from external
RAM
— what part of the data is stored in data-cache versus must
be fetched from RAM
— potentially, the state of the processor pipeline
Despite the potential importance of this initial hardware-state when
caching is present, it is almost impossible and definitely impractical
to describe this hardware state.
Therefore it is important and clear that AUTOSAR does not
provide explicit attributes for this purpose.

Resource consumption

Dependency on logical context
This logical context includes:
— the input parameters with which the runnable is called

— the logical “state” of the component to which the runnable
belongs (or more precisely: the contents of all the memory
that is used by the runnable)

While a description of the input-parameters is relatively straight-
forward to specify, it might be very hard to describe the entire
logical state that the runnable depends on.

In addition, in certain cases, one wants to provide a specific (e.g.
measured or simulated) execution time for a very specific logical
context; whereas in other cases, one wants to describe a “worst-
case execution time” over all valid logical contexts or over a subset
of logical contexts.

Resource consumption

Dependency on external code

Things get very complex when the piece of code whose execution
time is described makes calls into (“jJumps into”) external libraries.

To deal with this problem, we could take one of the following
approaches:
— Do not support this case at all

— Support a description of the execution time for a very specific version
(again at object-code level) of the libraries. The exact versions would be
described together with the execution time.

— Conceptually, it might be possible to explicitly describe the dependency
on the execution-times of the library. This description would include:

» the execution time of the code provided by the component itself
 a specification of which external library-calls are made

Option 3 is deemed impractical and is not supported.
Option 2 however is important as many software-components

might depend on very simple but very common external libraries (a
math-library that provides floating point capability in software).

Resource consumption

Description-model for the execution time

The description of the implementation of a component references
the description of the internal behavior of the atomic software-
component that is implemented The description of the internal
behavior describes all the "runnable entities" of the component.

Each description of such a runnable entity (of a specific
Implementation) can include an arbitrary number of execution-time
descriptions. Thereby this execution time description may also
depend on code or data variant of the implementation.

It is expected that many runnable entities will not have execution-
time descriptions. For runnable-entities that do have execution-
time descriptions, the componentimplementor could provide
several execution-time descriptions: for example one per specific
ECU on which the implementation can run and on which the time
was measured or estimated.

Resource consumption

How the execution time is part of the overall description of the
Implementation of a component.

ComponentType

AtomicSoftware ComponeniType

+comp0neml‘\ 1

ARElement
InternalBehavior

+beh aviorl"'\ 1

ARElement
Implementation

+behavior

+runnable

+resource Consumption

&

1

Identifiable
ResourceConsumption

1.7

+axecutionTime

Identifiable
RunnableEntity

+runnable \ 1

>

D_-i’

Identifiable
ExecutionTime

Resource consumption

HWElement
ProvidedMemorySegment

+ alignment: Int [0..1]
+ manufacturingQuality: Float [0..1]
identifiable + segmentSize: Int
ObjectFileSection + separate: Boolean [0..1]
. . . + alignment: Int
sntifi +objectFileSection owi 2
identiflable 1 = B e ahl - Hooiean +providedMemory
ResourceConsumption 1.r|+ s=eclionName: String
Mg + sze: Int X
£ = +softwareMemorySection
+ witable: Boolean ¥ MemorySectionLocation
1 | +resource Consumption 1
0.+
+executionTime Kenable : Sl 7
ExecutionTime +axtime +memarySectionLocation
ARElement 7
Implementaticn
+ basicSW: Siring DependencyOnFile
+ codeGenerator. Sting sexternalLibrary| DependencyOnLibrary
+ humanlLanguage: String .
+ programminglanguage: Enumeration| c, cpp, java) +| + maxVersion: Sting
+ requiredRTEVendor: String [0..1] + minVersion: Siring
+ muntime: Strng
B
+hardwarsCanfiguration HardwareC onfiguration
+behavior > + additionallnformation: Siring|
+ processorMode: Siring
ARElement + processorSpeed: Sfring
InternalBehavior
= sipporsiultipleingdsntiation: Boolean
+behavior SoftwareContext
+zoftware Context O
> + input: String
e 1| # sate: Sting
Identifigbie
RunnableEntity +runnakble +ecu
L ECUPrototype
+ canBelnvokedConcufrently: Boolean 4
+ symbol: String
«i30fTypen

WorstCaseExecutionTime

+ maximalExecutionTime: Float
+ minimalExecutionTime: Float

MeasuredExecutionTime

SimulatedExecutionTime

averageExecutionTime: Float
maximalExecutienTime: Float
minimalExecutionTime: Float
testPattern: String

ok ok

averageExecufionTime: Float
maximalExecutionTime: Float
minimal ExecutionTime: Float
testPattern: String

RoughEstimate OfExecutionTime

+

descripfion: String

HWElementContainer
ECU

